适应度回顾
适应度用于评价粒子优劣,一般设置为目标函数值
众所周知
- 一个较大的惯性权重有利于全局搜索
- 一个较小的惯性权重有利于局部搜索
基本粒子群算法的粒子速度迭代公式:
vid=wvid-1+c1r1(pbestid-xid)+c2r2(gbestd-xid)
w是定值,代表粒子自身的惯性权重,但随着迭代次数的增加,问题的求解细节也会有所改变,固定值在整体求解的过程中存在不少缺陷。因而,引入变动的惯性权重,以动态适应问题的求解流程。以下是两种用自适应惯性权重求解问题的范例。
求解最小值问题
1、wmin和wmax是预设的最小与最大惯性系数,一般wmin取0.4,wmax取0.9
2、faveraged为第d次迭代时所有粒子的平均适应度
3、fmind=min{f(x1d),f(x2d),…,f(x