粒子群算法改进——自适应惯性权重

本文介绍了粒子群优化算法中自适应惯性权重的应用,通过适应度函数调整粒子的搜索策略。在求解最小值和最大值问题时,根据适应度动态调整惯性权重,以平衡全局和局部搜索。通过实例和代码演示,显示了这种改进能更有效地接近最优解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

适应度回顾

适应度用于评价粒子优劣,一般设置为目标函数值

众所周知

  • 一个较大的惯性权重有利于全局搜索
  • 一个较小的惯性权重有利于局部搜索

基本粒子群算法的粒子速度迭代公式:

vid=wvid-1+c1r1(pbestid-xid)+c2r2(gbestd-xid)

w是定值,代表粒子自身的惯性权重,但随着迭代次数的增加,问题的求解细节也会有所改变,固定值在整体求解的过程中存在不少缺陷。因而,引入变动的惯性权重,以动态适应问题的求解流程。以下是两种用自适应惯性权重求解问题的范例。

求解最小值问题

在这里插入图片描述
1、wmin和wmax是预设的最小与最大惯性系数,一般wmin取0.4,wmax取0.9
2、faveraged为第d次迭代时所有粒子的平均适应度
3、fmind=min{f(x1d),f(x2d),…,f(x

评论 17
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值