要做的事:
1 参数初始化
2 正则化
参数初始化
#model[0].weight是第0层的w参数,其他层可同样的方法初始化参数,初始化在建好model后使用,怎样建model参考上一篇。
# 0-1之间均匀分布
torch.nn.init.uniform_(model[0].weight, a=0, b=1)
# 初始化为常数0.5
torch.nn.init.constant_(model[0].weight, 0.5)
# 正态分布
torch.nn.init.normal_(model[0].weight)
正则化
正则化是用来减小过拟合的方法,这里给出L2正则化方法和dropout方法
L2正则化
optimizer = torch.optim.Adam(model.parameters(), lr=learn_rate,weight_decay=0.01)
#这里的weight_decay=0.01相当于λ参数。
dropout方法
model=torch.nn.Sequential(
torch.nn.Linear(in_put,Hidden1,bias=True),
torch.nn.ReLU(),
torch.nn.Dropout(0.2),
torch.nn.Linear(Hidden1,Hidden2,bias=True),
torch.nn.ReLU(),
torch.nn.Dropout(0.2),
torch.nn.Linear(Hidden2,out_put,bias=True),
torch.nn.Sigmoid(),
)
#在每层后边加上torch.nn.Dropout(0.2),0.2是随机架空该层20%神经元。
结合上篇看