- 博客(68)
- 收藏
- 关注
转载 Python 多线程与多进程
原文地址:http://www.cnblogs.com/whatisfantasy/p/6440585.html1 概念梳理:1.1 线程1.1.1 什么是线程线程是操作系统能够进行运算调度的最小单位。它被包含在进程之中,是进程中的实际运作单位。一条线程指的是进程中一个单一顺序的控制流,一个进程中可以并发多个线程,每条线程并行执行不同的任务。一个线程是一个ex...
2018-10-03 10:57:00 202
转载 Python 基础 (-)
该笔记源自尚学堂,非原创Python 单词是“大蟒蛇”的意思。但是龟叔不是喜欢蟒蛇才起这个名字,而是正在追剧:英国电视喜剧片《蒙提·派森的飞行马戏团》(Monty Python and the Flying Circus)。使用 www.python.org 提供的 interactive shell 入门 Python· 特点可读性强可读性...
2018-09-28 22:15:00 2453
转载 吴恩达深度学习笔记 course4 week1 作业2
Residual NetworksWelcome to the second assignment of this week! You will learn how to build very deep convolutional networks, using Residual Networks (ResNets). In theory, very deep netwo...
2018-08-26 22:30:00 413
转载 吴恩达深度学习笔记 course4 week2 作业1
这周新使用了一个新框架,它是一个比较高级的框架,比起低级框架有更多的限制使用keras要注意的是:1.Keras框架使用的变量名和我们以前使用的numpy和TensorFlow变量不一样。它不是在前向传播的每一步上创建新变量(比如X, Z1, A1, Z2, A2,…)以便于不同层之间的计算。在Keras中,我们使用X覆盖了所有的值,没有保存每一层结果,我们只需要最新...
2018-08-25 09:20:00 462
转载 吴恩达深度学习笔记 course4 week2 深度卷积网络 实例探究
1.why look at case study这周会讲一些典型的cnn模型,通过学习这些,我们能够对于cnn加深自己的理解,并且在实际的应用中有可能应用到这些,或从中获取灵感2.Classic networksLeNet-5模型是Yann LeCun教授于1998年提出来的,它是第一个成功应用于数字识别问题的卷积神经网络。在MNIST数据中,它的准确率达到大约99.2%...
2018-08-24 17:33:00 242
转载 吴恩达深度学习笔记 cousrse4 week1作业
Convolutional Neural Networks: Step by Step¶Welcome to Course 4's first assignment! In this assignment, you will implement convolutional (CONV) and pooling (POOL) layers in numpy, includi...
2018-08-24 09:09:00 708
转载 吴恩达深度学习笔记 course2 week3作业
TensorFlow TutorialWelcome to this week's programming assignment. Until now, you've always used numpy to build neural networks. Now we will step you through a deep learning framewor...
2018-08-24 08:57:00 847
转载 吴恩达深度学习笔记 course4 week1 测验
1.第 1 个问题What do you think applying this filter to a grayscale image will do?⎡⎣⎢⎢01101331−1−3−3−10−1−10⎤⎦⎥⎥⎣⎢⎢⎡01101331−1−3−3−10−1−10⎦⎥⎥⎤Detect vertical ...
2018-08-23 20:46:00 1203
转载 吴恩达深度学习 course4 卷积神经网络
1.computer visioncv是深度学习的一个重要方向,cv一般而言包括:图像识别,目标检测,神经风格转换传统的神经网络所存在的问题:图片的输入维度比较大,具体如下图所示,这就造成了权重w的维度比较大,那么他所占用的内存也会比较大,计算w的计算量也会很大所以我们会引入卷积神经网络2.Edge detection example神经网络由浅层到深层可以检...
2018-08-13 22:03:00 203
转载 吴恩达深度学习笔记course3 week2 测验
第 1 个问题To help you practice strategies for machine learning, in this week we’ll present another scenario and ask how you would act. We think this “simulator” of working in a machine ...
2018-08-12 15:12:00 478
转载 吴恩达深度学习笔记 course3 week2 机器学习 策略(2)
1.Carrying out error analysis例:当我们在训练一个模型的时候,我们的准确率是90%,bayes optimized bias是0%,这个时候错误率达到了10%,那么我们如何分析是哪错了,并且快速改正,如果我们分析发现误将狗识别为猫,那我们是否又应该加入一些狗的图片,增强模型对负样本的训练?这个时候就引入了误差分析分析过程:这里吴恩达老师是取出1...
2018-08-12 12:13:00 138
转载 吴恩达深度学习笔记 course3 week1 测验
Problem StatementThis example is adapted from a real production application, but with details disguised to protect confidentiality.You are a famous researcher in the City of Peaceto...
2018-08-08 18:14:00 398
转载 吴恩达深度学习笔记 course3 week1 机器学习策略(1)
1.Why ML Strategy?当我们要优化一个模型的时候,我们可以通过许多种方法:而如何选择的方法也是多种多样,有一个快速,有效选择的策略对于我们而言非常重要.2.Orthogonalization正交化调节电视图像的时候,要使电视图像到正立中间,我们可以对于图像的水平方向,垂直方向,旋转角度分开调节,各设一个按钮,不让其相互影响这其实就是正交化,即...
2018-08-06 17:32:00 172
转载 吴恩达深度学习笔记 course2 week3 超参数调试,Batch Norm,和程序框架
1.Tuning Process对超参数的一个调试处理一般而言,在调试超参数的过程中,我们通常将学习率learning_rate看作是最重要的一个超参数,其次是动量梯度下降因子β(一般为0.9),隐藏层单元个数,mini-batch size,再然后是layers,learning rate decacy. 当然,这并不是绝对的.在adam算法中,β1,β2,ε通常...
2018-08-02 20:38:00 220
转载 吴恩达深度学习笔记 course2 week3 测验
1.第 1 个问题If searching among a large number of hyperparameters, you should try values in a grid rather than random values, so that you can carry out the search more systematically and n...
2018-08-02 11:02:00 415
转载 吴恩达深度学习笔记 course2 week2 作业
import numpy as npimport matplotlib.pyplot as pltimport scipy.ioimport mathimport sklearnimport sklearn.datasetsfrom opt_utils import load_params_and_grads, initialize_parameters,...
2018-07-31 22:43:00 357
转载 吴恩达深度学习笔记 course2 week2 优化算法
1.Mini-batchbatch:之前所用的都是将m个样本放在一起组成向量来就行训练,称为batch,所存在的问题:当样本的数量比较庞大的时候,迭代一次所需要的时间比较多,这种梯度下降算法成为Batch Gradient Descent为了解决这一问题引入 Mini-batch Gradient descent它是将全部样本分成t份子集,然后对每一份子集进行一个...
2018-07-30 11:18:00 168
转载 吴恩达深度学习笔记 course2 week1 作业3
Gradient Checking¶Welcome to the final assignment for this week! In this assignment you will learn to implement and use gradient checking.You are part of a team working to make mobile p...
2018-07-29 12:00:00 244
转载 吴恩达深度学习笔记 course2 week1 作业2
最后一个题跑出来的结果不知道为什么和答案相差甚远.......==RegularizationWelcome to the second assignment of this week. Deep Learning models have so much flexibility and capacity thatoverfitting can be a ser...
2018-07-28 21:43:00 370
转载 吴恩达深度学习笔记 course2 week1 作业1
InitializationWelcome to the first assignment of "Improving Deep Neural Networks".Training your neural network requires specifying an initial value of the weights. A well chosen initial...
2018-07-28 17:30:00 179
转载 吴恩达深度学习笔记 course2 week1 测验
1point1.第 1 个问题If you have 10,000,000 examples, how would you split the train/dev/test set?98% train . 1% dev . 1% test √...
2018-07-28 10:33:00 232
转载 吴恩达深度学习笔记 course 2 1.1~1.14 深度学习的实用层面
1.1 Train/dev/test sets在构建一个神经网络的时候我们往往需要设计很多参数,如:layers,learning rates ,acivation functions,hidden units, 而这些参数我们往往不能一次性就能设计到成为了最佳的参数,往往是我们自己有一些想法,然后写出代码,开始实验,然后开始调整,再次更改代码实验,就这样一步步调整,得到最佳的参数....
2018-07-27 22:19:00 206
转载 吴恩达深度学习笔记 第四章作业1
import h5pyimport matplotlib.pyplot as pltfrom testCases import *from dnn_utils import sigmoid, sigmoid_backward, relu, relu_backwardplt.rcParams['figure.figsize'] = (5.0, 4.0) ...
2018-07-26 15:55:00 609
转载 吴恩达深度学习笔记 第四章测验
What is the “cache” used for in our implementation of forward propagation and backward propagation?[ ] It is used to cache the intermediate values of the cost function during training.[...
2018-07-25 21:18:00 212
转载 吴恩达深度学习笔记 4.1~4.8 深层神经网络
之前一章讲了 浅层神经网络,这一章讲的是深层神经网络深层神经网络与浅层神经网络的区别是:隐藏层比浅层神经网络多,从命名规则上来说,有1,2,5个隐藏层的神经网络可以称为1 hidden layer,2 hidden layers,5 hidden layers深层神经网络中的正向传播与之前举例的浅层神经网络一样,只是层数变得更多了,如下所示:对于每一层的正向...
2018-07-25 20:45:00 339
转载 吴恩达深度学习笔记 第三章测验
Week 3 Quiz - Shallow Neural NetworksWhich of the following are true? (Check all that apply.) Notice that I only list correct options.X is a matrix in which each column is one training ...
2018-07-23 20:42:00 249
转载 吴恩达深度学习笔记 3.1~3.11 浅层神经网络
第二章总结了二分分类与逻辑回归,第三章关于浅层神经网络神经网络的结构与逻辑回归类似,只是神经网络的层数比逻辑回归多了一层,多出的中间一层叫隐藏层,那么,神经网络的计算就相当于多进行一次逻辑回归的计算正向传播过程分成两层,第一层是输入层到隐藏层,用上标[1]来表示:第二层是隐藏层到输出层,用上标[2]来表示神经网络的正向传播过程为:每一个神经元的计算过程如下:...
2018-07-23 20:13:00 144
转载 吴恩达深度学习笔记 第二章作业2
源码以及注释:import numpy as npimport matplotlib.pyplot as pltimport h5pyimport scipyfrom PIL import Imagefrom scipy import ndimagefrom lr_utils import load_datasettrain_set_x_orig , ...
2018-07-22 09:27:00 1039
转载 吴恩达深度学习笔记 第二章作业1
coursea链接:https://www.coursera.org/learn/neural-networks-deep-learning/notebook/Zh0CU/python-basics-with-numpy-optionalhttps://www.coursera.org/learn/neural-networks-deep-learning/notebook/Zh...
2018-07-21 09:18:00 304
转载 吴恩达深度学习笔记 (补)1.1~1.5 神经网络概述
神经网络是一种灵感来自于大脑工作的算法.举一个例子:假设房子的价格与房子大小有关,为了预测房子的价格,我们可以先可以搜集一批房子价格对有房子大小的数据,为了能够进行分析,我们需要建立一个模型,来实现输入size x时能够输出对应的price y.将我们所搜集到的数据关系绘制成一个图形表示,他们是一些离散型的点,我们可以通过一条直线拟合这些点而因为房子的价格不会是负...
2018-07-17 16:09:00 138
转载 吴恩达深度学习笔记 2.6~2.9 logistic中的梯度下降
之前我们已经了解了Coss Function的定义,它是一个convex,所以我们能找到它的全局最优解,我们可以先可以先随便选取一组w,b,求得刚开始J(w,b)对w的偏导,用公式:我们可以对w进行更新,其中α为学习率,为梯度下降的步长,α越大,步长越大,同理也可以对b更新,最后经过一步步迭代,我们能够找到最优解使得Cost Function最小.逻辑回归...
2018-07-15 21:44:00 159
转载 吴恩达深度学习笔记 2.3 logistic回归损失
discrepancy:矛盾,相差为了训练参数w,b,我们需要定义一个成本函数损失函数:损失函数测量预测(p()和期望输出(y()之间的差异。换句话说。损失函数计算单个培训示例的错误。损失函数用下面一个,因为上面有一个为非凸行,不能得到全局的最优解,下面一个才能得到全局的最优解.成本函数:成本函数是那个整个训练集的平均值,我们将寻找参数w和b来最小化...
2018-07-14 17:06:00 139
转载 吴恩达深度学习笔记2.2 logistic回归
regression:回归 supervised:有监督的logistic回归是一种学习算法被用于有监督学习问题,当y全都是0或1时例子:判断是否有猫给定一个由特征向量x代表的图像,那个算法将会估计猫是否在那个图像里的可能性logistic回归的参数如下:转载于:https://www.cnblogs.com/Dar-/p/9310066.html...
2018-07-14 16:37:00 135
转载 找第一个只出现一次的字符
041:找第一个只出现一次的字符查看提交统计提问总时间限制:1000ms内存限制:65536kB描述给定一个只包含小写字母的字符串,请你找到第一个仅出现一次的字符。如果没有,输出no。输入一个字符串,长度小于100000。输出输出第一个仅出现一次的字符,若没有则输出no。样例输入abcabd样例输出c#includ...
2018-06-14 21:41:00 226
转载 编程填空:第i位替换 编程填空:第i位取反 编程填空:左边i位取反
037:编程填空:第i位替换查看提交统计提问总时间限制:1000ms内存限制:1024kB描述写出函数中缺失的部分,使得函数返回值为一个整数,该整数的第i位和m的第i位相同,其他位和n相同。请使用【一行代码】补全bitManipulation1函数使得程序能达到上述的功能#include <iostream>...
2018-06-13 17:51:00 609
转载 c++(三)
函数:函数在调用之前必须进行声明或者定义,函数的声明:返回值类型 函数名(参数类型 参数名称.......);其中参数名称可以省略;函数的形参是实参的一个拷贝,形参改变实参不会改变,除非参数是数组,引用;数组作为参数传递时可以不写数组的成员个数 如:void test(int a[]){....};二维数组作为参数传递的时候可以不写明有多少行,但必须写明有多少列 void...
2018-06-07 18:47:00 116
转载 c++(二)
---恢复内容开始---数组---恢复内容开始---格式控制符:%x:以16进制的形式输出或者读入;%u:已无符号形式输出或读入cin cout 与scanf printf,一个程序不要两者混用;运算符:赋值运算符,算术运算符,关系运算符,逻辑运算符;赋值运算符:=,+=,-=,*=,/=,%=算数运算符:+,-,*,/,%,++,-- 进行算...
2018-06-06 22:25:00 97
转载 p=p+1与p++的区别
其结果值相等但是在计算p = p+1的时候,CPU的顺序是这样的1. 首先找到p+1中右边p的地址,记住,CPU并不知道左边的p和右边的p是同一个地址,他会将这两个p视为两个不同的变量。2. 找到右边的p的地址后,然后加1,3,这一步就是找左边的p的地址。4.将结果赋值给左边的p。结束5. 计算机是不是很笨,是的,他很笨,但是他速度快,并且他严格按照规矩办事,所以一般不会出现错误。当...
2018-06-04 20:59:00 973
转载 (String)、toString、String.valueOf用法区别(转)
在Java项目的实际开发和应用中,常常需要用到将对象转为String这一基本功能。本文将对常用的转换方法进行一个总结。 常用的方法有(String)要转换的对象,Object#toString(),String.valueOf(Object)等。(String)这是标准的类型转换,将object转成String类型的值。使用这种方法时,需要注意的...
2018-05-26 14:40:00 73
转载 本地jar包发布到服务器上
在WEB-INF下创建一个lib目录,将所需要的本地jar包导入然后在创建的maven项目中加入配置:<plugin> <groupId>org.apache.maven.plugins</groupId> <artifactId>maven-compiler-plugin</artifactId> ...
2018-05-25 12:07:00 712
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人