Machine Learning
文章平均质量分 72
Machine Learning
目睹闰土刺猹的瓜
这是个很久远的事,在歌舞升平的城市...
展开
-
用于定位任务的指数距离变换图--Exponential Distance Transform Maps for Cell Localization
在医学图像分析领域,细胞定位是一个至关重要的任务,涉及在图像中精确预测细胞的位置。当前的定位方法使用基于卷积神经网络(CNN)模型和普通卷积来预测密度图。然后,通过局部最大搜索策略来处理这些密度图,以获得细胞的位置和数量信息。然而,这种方法存在三个主要问题。首先,基于普通卷积的CNN模型难以处理细胞颜色的显著变化。其次,密度图不能提供准确的细胞位置和梯度信息,尤其在密集区域,导致信息丢失。最后,密度图的后处理策略容易受到背景噪声和正负细胞之间的干扰。原创 2023-10-18 16:28:08 · 348 阅读 · 0 评论 -
基于多尺度超图的特征对齐网络--细胞定位
医学病理图像分析中的细胞定位是一项具有挑战性的任务,因为细胞的形状、大小和颜色变化显著。现有的定位方法继续分别应对这些挑战,经常面临这些困难相互交织并对模型性能产生不利影响的复杂情况。在本文中,首先将这些挑战重新界定为细胞图像和位置地图之间特征不对齐的问题,然后进行综合处理。具体而言,我们提出了一种基于多尺度超图注意网络的特征对齐模型。该模型将特征图中的局部区域视为节点,并利用可学习的相似性度量在不同尺度下构建超图。然后,我们利用超图卷积网络来汇总与节点相关的特征,并实现细胞图像和位置地图之间的特征对齐。原创 2023-10-18 13:02:47 · 496 阅读 · 0 评论 -
one-hot vector(独热编码)
提出的目的:在机器学习算法中,我们经常会遇到分类特征,例如:人的性别有男女,祖国有中国,美国,法国等。这些特征值并不是连续的,而是离散的,无序的。于是,我们需要对其进行特征数字化。具体含义:One-Hot编码,又称为一位有效编码,主要是采用N位状态寄存器来对N个状态进行编码,每个状态都由他独立的寄存器位,并且在任意时候只有一位有效。One-Hot编码是分类变量作为二进制向量的表示。这首先要求将分类值映射到整数值。然后,每个整数值被表示为二进制向量,除了整数的索引之外,它都是零值,它被标记为1。举转载 2021-01-17 14:08:26 · 7639 阅读 · 0 评论 -
机器学习策略(一)
很久以前看吴恩达老师的视频和西瓜书时用jupyter写的,今天想起来就把它转到这里,ML(machine learning)策略:避免盲目选择,让我们能够更快更有效地让机器学习系统工作优化模型的方法:Collect more dataCollect more diverse training setTrain algorithm longer with gradient descent...原创 2019-10-29 15:41:29 · 506 阅读 · 0 评论 -
机器学习策略(二)
很久以前看吴恩达老师的视频和西瓜书时用jupyter写的,今天想起来就把它转到这里,误差分析:针对错误样本,观察每个因数在错误样本中所占的比例来判断其重要性。通过这样的分析,使得我们可以专注解决影响模型正确率的主要问题。dev/test sets中训练样本错误(y标注错误)时有必要手动矫正的情况:sets中分类错误的样本中错误样本所占的比例较高。修正数据集的几点建议:1.同时对开发集和测试...原创 2019-10-29 15:40:16 · 168 阅读 · 0 评论 -
机器学习:贝叶斯分类
很久以前看吴恩达老师的视频和西瓜书时用jupyter写的,今天想起来就把它转到这里,真的挺方便。贝叶斯决策论:所有相关概率都已知的理想情形下,基于这些概率和误判损失来选择最优的类别标记。决策目标:最小化分类错误率,即对每个样本选择能使后验概率 P( c | x )最大的类别 c 标记。现实中,将求后验概率P(c|x)的问题转变为求先验概率P©和条件概率P(x|c)。P(c∣x)=P(x,c)...原创 2019-10-27 18:27:39 · 492 阅读 · 0 评论 -
机器学习:西瓜书基础知识笔记
很久以前看吴恩达老师的视频和西瓜书时用jupyter写的,今天想起来就把它转到这里,真的挺方便。绪论样本空间(属性空间):属性张成的空间。如色泽、根蒂、敲声张成的用于描述西瓜的三维空间,每个西瓜都能在这个空间找到自己的坐标位置。特征向量:空间中每一个点所对应的坐标向量。泛化能力:学得模型适用于新样本的能力。假设空间:所有假设组成的空间。假设西瓜的好坏由“色泽”,“根蒂”以及“敲声”决定,...原创 2019-10-27 18:16:33 · 956 阅读 · 0 评论 -
机器学习:决策树
决策树:基于树结构进行决策,决策过程的每个判定问题都是对某个属性的“测试”。一般只包含一个根节点、若干个内部节点及若干个叶子节点。决策树学习的目的:产生一颗泛化能力强的决策树。from IPython.display import Imagelibo="C:/Users/libo/Desktop/machine learning/西瓜书/西瓜书图片/"Image(filename = li...原创 2019-10-27 18:07:51 · 208 阅读 · 0 评论 -
机器学习:支持向量机
目的:基于训练集D在样本空间中找到一个划分超平面,将不同类别的样本分开并选择泛化能力最强的划分超平面。1.间隔与支持向量–在众多超平面中找到鲁棒性最好的那个划分超平面可通过如下线性方程描述: wTx+b=0w^Tx + b = 0wTx+b=0W与b共同决定了超平面。平面上任意一点到超平面的距离为:γ=∣wTx+b∣∣∣w∣∣\gamma = \frac {|w^Tx + b|}{||...原创 2019-10-27 15:15:57 · 275 阅读 · 0 评论