- 博客(17)
- 收藏
- 关注
转载 记录Opencv在相机设备上显示帧率的解决方案
在以上代码中,我们使用frames_per_second_filtered变量保留过去的过滤值,并将其与新的FPS测量结果相结合。在以上代码中,我们将FPS转换为整数,并将其放在文本中。然后,我们使用cv2.putText()函数将文本添加到帧的指定位置上。在计算FPS之前,我们首先需要了解如何测量程序处理每帧所需的时间。要在视频窗口中显示FPS,我们将使用OpenCV的cv2.putText()函数将文本添加到帧上。通过测量两个时间戳之间的差异,我们可以得到每帧处理的时间(以秒为单位)。
2024-09-12 11:37:27 94
原创 纯小白入门一下深度学习应用 - 1. 深度学习框架和模型部署问题
两者都是主流的深度学习的框架。(里面有些很好用的库,用来构建自己的深度学习网络框架。)其他的有比如(Keras,甚至万能的MATLAB)Pytorch - Facebook搞出来的;Tensorflow - Google搞出来的。
2024-09-10 21:45:52 289
原创 【MATH】牛顿法基础
如果xnx_nxn是非线性方程fx0f(x)=0fx0的一个近似解,如果f′xn≠0f′xn0,则下一个近似解由下式给出xn1xn−fxnf′xnxn1xn−f′xnfxn。
2024-04-02 21:58:03 730 1
原创 【数据结构笔记-1.2】算法的定义
递归函数的空间复杂度更高。例子:两个算法那个好?1)计算机运行乘除法比加减法速度慢很多,不在一个数量级;所以,我们去计算一下哪个乘法数量多:因此,在分析一般算法效率的时候,我们经常关注下面两种复杂度:1)最坏情况的复杂度2)平均复杂度通常,我们最关心最坏复杂度,因为这个平均复杂度,我们很难去定义它。
2023-12-19 23:31:11 401
原创 【数据结构笔记-1.1】关于数据组织-例_图书摆放
答:没统一的标准答案.核心:数据结构和算法是两个经常挨在一起的东西,距离举例子感受数据结构。· 数据类型:1)数据对象集(属性)2)数据集合相关联的操作集(方法)····· C语言里是独立处理的····· C++等高级语言中是集成的封装在一个类中(属性和方法)·抽象:描述数据类型的方法不依赖于具体的实现1)与存放数据机器无关2)与数据存储的物理结构无关3)与实现操作的算法和编程语言无关只描述数据对象集和相关操作集”是什么“,并不涉及”如何做到“
2023-12-12 21:43:25 82
原创 【论文精读】Differential Representations for Mesh Processing(微分坐标在网格处理用的应用)
曲面表示和处理是计算机图形学和几何建模中的关键问题之一,因为它极大地影响了可能的应用范围。在本文中,我们将介绍与拉普拉斯处理框架和微分表示相关的几何处理的最新进展。该框架基于定义在多边形网格上的线性算子,并提供了各种处理应用,如形状逼近和紧凑表示、网格编辑、水印和变形。该框架的核心是基于网格拉普拉斯算子的微分坐标定义和高效网格几何表示的新基。给定三角曲面VVEFVVEF分别是顶点、边、面。顶点数据是定义在笛卡尔坐标系下的,vixiyizivixiyi。
2023-10-29 17:43:03 170 1
原创 【论文精读】Geometry-Aware Bases for Shape Approximation
1)本文介绍了一种不规则的三角形网格形状近似技术。2)该方法使用了少量的基向量的线性组合来近似网格的几何结构。基向量是关于网格连接和网格上锚点索引的函数。3)我们的方法和基于几何遗忘(geometry-oblivious)方法【例如基于拉普拉斯算子的谱方法】有着根本的区别。在后者中,基向量只是连通性的函数。相反,我们的方法的基向量是几何感知的,因为他们既取决于连通性,又取决于给定网格中“几何上重要”的顶点的二进制标记(例如极值)。
2023-10-27 21:41:26 89 1
原创 OpenMesh利用正二十面体绘制球体
【代码文档】https://www.graphics.rwth-aachen.de/media/openmesh_static/Documentations/OpenMesh-7.1-Documentation/a01186.html。这里直接采用OpenMesh自带的细分器,有兴趣可以自己写细分算法(参考:https://blog.csdn.net/qq_31804159/article/details/109147352)【后期考虑自己重学一遍】;#2 - Loop细分。
2023-10-23 18:16:57 183
原创 【git】Please make sure you have the correct access rights and the repository exists. 问题解决
https://zhuanlan.zhihu.com/p/615525814
2023-10-23 15:56:12 301
原创 《机器学习基础》学习笔记-第二章 PAC学习框架-2.3对有限假设集的学习保证(不一致的情况)
答案是否定的,因为推论2.3.2是针对某个单一的假设而言的,且其经验误差的期望等于泛化误差(y大数定律,第2.1节)但对于一个训练样本来说,当假设hs不固定时,泛化误差R(hs)就是一个随机变量,而一般与经验误差的期望E( R )(常数)不同。但,不一致,并不意味着不能学习,在训练样本上允许少量误差的不一致假设可能是满足使用要求的,并且这种假设在一定条件下是满足PAC理论的。那么,在这样的设定下,真实错误率为R(h) = p,对应地,通过i.i.d. 训练样本可以得到一个正面向上的经验概率。
2023-05-09 21:06:36 95
原创 《机器学习基础》学习笔记-第二章 PAC学习框架-2.2对有限假设集的学习保证(一致的情况)
回顾:2.1节中讲到的矩形例子中,学习算法返回的假设总是一致的,即这样的假设在训练样本上准确无误。本节内容另外又参考了(周志华老师)《机器学习》一书的一些解释。分为两种情况分开讨论其泛化能力。
2023-05-09 19:52:26 161 1
原创 《机器学习基础》学习笔记-第二章 PAC学习框架-2.1PAC学习模型-例题:学习平行于坐标轴的矩形
该问题特点:假设集H与概念类C是一致的,并且假设集是无限的。(关于模型一致性与泛化性的相关概念此处不再赘述)
2023-05-09 17:03:29 433 1
原创 《机器学习基础》学习笔记-第二章 PAC学习框架-2.1PAC学习模型
1.样本(example)/实例(instance)集合 or 输入空间:记为XX;2.标签(label)/目标值(taget value)集合:记为YY;**注意:本书中考虑二分类问题作为入门,因此Y01Y01;3.一个概念ccccX→YcX→Y表示XX到YY的一个映射;注意:同样,对于二分类问题中,可以认为概念指的是从XX到01\{0,1\}01的映射,进一步的可以认为概念是XX的一个子集。4.概念类CCC。
2023-04-09 19:47:24 598 1
原创 《机器学习基础》学习笔记-Foundation of Machine Learning
机器学习基础-Foundations of Machine Learning学习笔记
2023-04-08 22:36:31 219 1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人