相比于前两篇 B l o g Blog Blog 中关于卷积物理意义以及性质的讨论,这篇 B l o g Blog Blog 重点归纳卷积计算的技巧和方法。以连续时间信号的卷积计算为主,因为离散情况下很简单,慢慢滑动一个个对应着来就OK。因为连续时间信号的卷积涉及积分,对上下限的考量需要对卷积定义比较清晰才行
典型例题来袭
注:勘误!!下面的例题中,关于 h ( − τ ) h(-τ) h(−τ) 的函数波形,在 t = − 2 T t = -2T t=−2T的时候的函数值应该为 2 T 2T 2T
在着手开始分析第一个例子之前,我们回顾一下连续信号的卷积公式:
y
(
t
)
=
∫
−
∞
+
∞
x
(
τ
)
h
(
t
−
τ
)
d
τ
y(t) = \int_{-∞}^{+∞}x(τ)h(t-τ)dτ
y(t)=∫−∞+∞x(τ)h(t−τ)dτ
其中,
x
(
τ
)
x(τ)
x(τ) 和
h
(
t
−
τ
)
h(t-τ)
h(t−τ) 代表两者的重叠部分,具体的值是两个重叠部分函数值的乘积。
τ
τ
τ 应该是两者重叠部分的时间范围
其实,这个表达式是一个囊括了不同情况的综合表达式,很多时候,我们计算的卷积往往是分段函数,这时,积分的上下限就不能是简单的 + ∞ +∞ +∞ 和 − ∞ -∞ −∞了
【例题一】:求以下两个信号的卷积

S t e p 1 Step 1 Step1:先画出 x ( τ ) x(τ) x(τ) 和 h ( − τ ) h(-τ) h(−τ):

还记得我们在关于卷积的第一篇 B l o g Blog Blog 里面谈到的吗: h ( t − τ ) h(t - τ) h(t−τ) 代表的是对 h ( − τ ) h(-τ) h(−τ) 原点的移动,,具体把 h ( − τ ) h(-τ) h(−τ) 的原点移动到什么地方呢?就是看 x ( τ ) x(τ) x(τ) 图像中,我们要求的 τ = t τ = t τ=t 的位置

S
t
e
p
2
Step2
Step2:我们要大致观察以下
t
t
t 取什么值的时候二者有重叠部分,取什么值的时候没有重叠部分
从本题,很明显,在
t
<
0
t < 0
t<0,以及
t
>
3
T
t > 3T
t>3T 的时候,二者没有重叠,因此也有:
y
(
t
)
=
0
y(t)=0
y(t)=0
而在 0 < t < T 0 < t < T 0<t<T; T < t < 2 T T < t < 2T T<t<2T 以及 2 T < t < 3 T 2T < t < 3T 2T<t<3T 的部分都会有重叠,因此我们分别讨论。
(1)在 0 < t < T 0 < t < T 0<t<T 时,

黄色区域是二者重叠部分,不过我们重点关系的,是这个重叠部分的范围,显然,是:
[
0
,
t
]
[0, t]
[0,t]
因此,
τ
τ
τ 的范围就是:
0
<
τ
<
t
0 < τ < t
0<τ<t,在这个范围下,那条斜线就是
h
(
t
−
τ
)
h(t - τ)
h(t−τ),横线就是
x
(
τ
)
x(τ)
x(τ)。那么我们可以知道:在此范围下,
x
(
τ
)
=
1
x(τ) = 1
x(τ)=1、
h
(
t
−
τ
)
=
−
(
τ
−
t
)
h(t-τ) = -(τ - t)
h(t−τ)=−(τ−t)(因为
h
(
t
−
τ
)
h(t-τ)
h(t−τ) 在本题中始终是一条斜率为 -1 ,始终过点 (t, 0) 的直线)
因此,我们就带入公式,得: y ( t ) = ∫ 0 t − ( τ − t ) d τ = 1 2 t 2 y(t) = \int_{0}^{t}-(τ - t)dτ = \frac{1}{2}t^2 y(t)=∫0t−(τ−t)dτ=21t2
至此,我们完成了第一个重叠区间的卷积积分的计算
对于 T < t < 2 T T < t < 2T T<t<2T 时,如下图所示:

黄色区域是重叠部分,重叠部分的范围是 [ 0 , T ] [0, T] [0,T],因此, 0 < τ < T 0 < τ < T 0<τ<T,重叠区域两函数表达式和第一种情况一样,因此,我们有: y ( t ) = ∫ 0 T − ( τ − t ) d τ = T t − 1 2 T 2 y(t) = \int_{0}^{T}-(τ - t)dτ = Tt - \frac{1}{2}T^2 y(t)=∫0T−(τ−t)dτ=Tt−21T2
后面的情况,处理方法一样,这里就不赘述啦。最终的结果和 y ( t ) y(t) y(t) 的图像如下:

始终贯穿这一方法,卷积积分的计算也就不那么困难了!
好啦!这篇 B l o g Blog Blog 到这里就结束辽!和之前的两篇 B l o g Blog Blog 结合在一起,就成了 “卷积三剑客”。希望这三篇 B l o g Blog Blog 能对今后卷积的学习带来帮助!
“卷积笔记三剑客地址”:
【信号与系统学习笔记】—— 一起走进“卷积”的世界 1【详细整理+个人理解】