【信号与系统学习笔记】—— 一起走进“卷积”的世界3 【技巧方法篇】 连续时间信号的卷积计算技巧

相比于前两篇 B l o g Blog Blog 中关于卷积物理意义以及性质的讨论,这篇 B l o g Blog Blog 重点归纳卷积计算的技巧和方法。以连续时间信号的卷积计算为主,因为离散情况下很简单,慢慢滑动一个个对应着来就OK。因为连续时间信号的卷积涉及积分,对上下限的考量需要对卷积定义比较清晰才行

典型例题来袭

注:勘误!!下面的例题中,关于 h ( − τ ) h(-τ) h(τ) 的函数波形,在 t = − 2 T t = -2T t=2T的时候的函数值应该为 2 T 2T 2T

在着手开始分析第一个例子之前,我们回顾一下连续信号的卷积公式: y ( t ) = ∫ − ∞ + ∞ x ( τ ) h ( t − τ ) d τ y(t) = \int_{-∞}^{+∞}x(τ)h(t-τ)dτ y(t)=+x(τ)h(tτ)dτ
其中, x ( τ ) x(τ) x(τ) h ( t − τ ) h(t-τ) h(tτ) 代表两者的重叠部分,具体的值是两个重叠部分函数值的乘积。 τ τ τ 应该是两者重叠部分的时间范围

其实,这个表达式是一个囊括了不同情况的综合表达式,很多时候,我们计算的卷积往往是分段函数,这时,积分的上下限就不能是简单的 + ∞ +∞ + − ∞ -∞

【例题一】:求以下两个信号的卷积

S t e p 1 Step 1 Step1:先画出 x ( τ ) x(τ) x(τ) h ( − τ ) h(-τ) h(τ)

还记得我们在关于卷积的第一篇 B l o g Blog Blog 里面谈到的吗: h ( t − τ ) h(t - τ) h(tτ) 代表的是对 h ( − τ ) h(-τ) h(τ) 原点的移动,,具体把 h ( − τ ) h(-τ) h(τ) 的原点移动到什么地方呢?就是看 x ( τ ) x(τ) x(τ) 图像中,我们要求的 τ = t τ = t τ=t 的位置

S t e p 2 Step2 Step2:我们要大致观察以下 t t t 取什么值的时候二者有重叠部分,取什么值的时候没有重叠部分
从本题,很明显,在 t < 0 t < 0 t<0,以及 t > 3 T t > 3T t>3T 的时候,二者没有重叠,因此也有: y ( t ) = 0 y(t)=0 y(t)=0

而在 0 < t < T 0 < t < T 0<t<T T < t < 2 T T < t < 2T T<t<2T 以及 2 T < t < 3 T 2T < t < 3T 2T<t<3T 的部分都会有重叠,因此我们分别讨论。

(1)在 0 < t < T 0 < t < T 0<t<T 时,

黄色区域是二者重叠部分,不过我们重点关系的,是这个重叠部分的范围,显然,是: [ 0 , t ] [0, t] [0,t]
因此, τ τ τ 的范围就是: 0 < τ < t 0 < τ < t 0<τ<t,在这个范围下,那条斜线就是 h ( t − τ ) h(t - τ) h(tτ),横线就是 x ( τ ) x(τ) x(τ)。那么我们可以知道:在此范围下, x ( τ ) = 1 x(τ) = 1 x(τ)=1 h ( t − τ ) = − ( τ − t ) h(t-τ) = -(τ - t) h(tτ)=(τt)(因为 h ( t − τ ) h(t-τ) h(tτ) 在本题中始终是一条斜率为 -1 ,始终过点 (t, 0) 的直线)

因此,我们就带入公式,得: y ( t ) = ∫ 0 t − ( τ − t ) d τ = 1 2 t 2 y(t) = \int_{0}^{t}-(τ - t)dτ = \frac{1}{2}t^2 y(t)=0t(τt)dτ=21t2

至此,我们完成了第一个重叠区间的卷积积分的计算

对于 T < t < 2 T T < t < 2T T<t<2T 时,如下图所示:

黄色区域是重叠部分,重叠部分的范围是 [ 0 , T ] [0, T] [0,T],因此, 0 < τ < T 0 < τ < T 0<τ<T,重叠区域两函数表达式和第一种情况一样,因此,我们有: y ( t ) = ∫ 0 T − ( τ − t ) d τ = T t − 1 2 T 2 y(t) = \int_{0}^{T}-(τ - t)dτ = Tt - \frac{1}{2}T^2 y(t)=0T(τt)dτ=Tt21T2

后面的情况,处理方法一样,这里就不赘述啦。最终的结果和 y ( t ) y(t) y(t) 的图像如下:

始终贯穿这一方法,卷积积分的计算也就不那么困难了!

好啦!这篇 B l o g Blog Blog 到这里就结束辽!和之前的两篇 B l o g Blog Blog 结合在一起,就成了 “卷积三剑客”。希望这三篇 B l o g Blog Blog 能对今后卷积的学习带来帮助!

“卷积笔记三剑客地址”:

【信号与系统学习笔记】—— 一起走进“卷积”的世界 1【详细整理+个人理解】

【信号与系统学习笔记】—— 一起走进“卷积”的世界 2【系统基本性质和卷积的关系】

【信号与系统学习笔记】—— 一起走进“卷积”的世界3 【技巧方法篇】 连续时间信号的卷积计算技巧

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值