在上一个连载里面,我们推导出了均匀平面波的第一个特性:与传播方向相同的场量为0;电场、磁场和波的传播方向三者相互垂直。那么,既然是波,那肯定要和波动方程扯一扯关系,那么今天的连载,我们就一起看看均匀平面波波动方程的解的形式。
首先,我们知道,对于电磁波的波动方程,电场和磁场各有一个波动方程。
我们还是以上一个连载所说的沿着 +z 方向的电磁波为例:
(值得说明的是:下面的这幅图呢,是顺便还假设了电场就是 x 方向,磁场就是 y 方向。但是即使电磁波的传播方向沿着 +z 方向,电场和磁场的方向还是能够有很多种的,除了z方向)。如下图所示:
那么,我们再把目光转向第一个图,我们可以看到,此时的电场只有 x 方向的分量,即电场为:
而磁场只有 y 方向的分量,即磁场为:
接下来,我们回顾一下在连载24里面所推导出来的在无源理想介质下的波动方程:
如果分别把电场和磁场带进去,就可以得到两个分别关于电场、磁场的波动方程:
求解这样的波动方程需要比较高深的数学知识,但是这并不重要,重要的是我们需要掌握这个波动方程解的形式,以及解的物理意义是什么。
对于电场的波动方程,我们解出来的形式是:
其中,
表示的意义是沿着 +z 方向传播的电场,也称之为入射电场
而这一项,表示的意义就是沿着 -z 方向传播的电场,也叫做反射电场
同理,磁场的波动方程的解也可以分为入射磁场和反射磁场两部分。
另外,我们刚刚针对的,都是一般的时变场,而我们以前也说过,重点研究对象是时谐变电磁场。因此,我们下面也看看时谐变电磁场波动方程的解的形式:(下面先以无界理想介质的时谐变均匀平面波为例)
其中,γ 我们定义为传播常数,在理想介质里面,有:
γ
=
j
β
γ = jβ
γ=jβ,其中,
β
β
β是相位常数。
其波动方程的解依然是分为了入射波和反射波两个部分。
你看到
−
j
β
z
-jβz
−jβz 就说明这部分的波是沿着 +z 方向传播的。
至于 η ,他表示的是波阻抗,无论是一般的时变场还是时谐变场,我们都用入射电场与入射磁场的比值来表示。
好啦!这就是本次连载的全部内容了,我们现在搞清楚了理想介质中均匀平面波的两个特性,下一个连载我们就一起把剩下的性质也汇总一下。