在上一个连载里面,我们讨论了平行极化波的斜入射,至此,斜入射的讨论我们就接近尾声了,我们重新回顾一下垂直极化波和平行极化波斜入射的公式:
下面再看看平行极化波的:
OK,下面我们进入今天的正题一——全反射。
我们说,当均匀平面波投向媒质分界面时,若分界面上的反射系数 |R| = 1(即反射波和入射波幅值相等),这种现象我们称之为全反射。
下面我们推导一下到底什么条件下才会发生全反射:
我们还记得折射定律吗? s i n θ i s i n θ t = n 2 n 1 \frac{sinθ_i}{sinθ_t} = \frac{n_2}{n_1} sinθtsinθi=n1n2
而
n
=
ω
ε
μ
n = ω\sqrt{εμ}
n=ωεμ,一般来说电磁波的频率是不变的,而如果对于非铁磁媒质,常常有:
μ
1
=
μ
2
μ_1 = μ_2
μ1=μ2,那么上式就可以变为:
s
i
n
θ
i
s
i
n
θ
t
=
ε
2
ε
1
\frac{sinθ_i}{sinθ_t} = \sqrt{\frac{ε_2}{ε_1}}
sinθtsinθi=ε1ε2
如果此时平面波从波密介质入射到波疏介质(即
ε
1
>
ε
2
ε_1 > ε_2
ε1>ε2),那么根号那一项始终是小于1的,那么如果此时我们让入射角不断增大,那么将会使得折射角
θ
t
θ_t
θt 趋向于 pi/2。那么,我们下面就看看,当
θ
t
=
π
2
θ_t = \frac{π}{2}
θt=2π时会发生什么情况—— 将
θ
t
θ_t
θt 带入本文最开始的式子,得到:
R
⊥
=
1
,
R
/
/
=
1
R_{⊥} = 1, R_{//} = 1
R⊥=1,R//=1
这不就刚好满足全反射的定义吗!
那么,我们就可以把使得折射角等于 pi/2 的入射角解出来,即:
θ
c
=
a
r
c
s
i
n
n
2
n
1
θ_c = arcsin\frac{n_2}{n_1}
θc=arcsinn1n2
【注:为了使得 arcsin 有意义,需要保证
−
1
<
n
2
n
1
<
1
-1< \frac{n_2}{n_1}<1
−1<n1n2<1 ,这即是要满足从波密入射到波疏】
因此均匀平面波从光密介质入射到光疏介质时,入射波无论是平行极化波还是垂直极化波,只要其入射角大于临界角 θ c θ_c θc,均会发生全反射现象。
值得注意的是,虽然我们刚刚讨论的情况下, R ⊥ = 1 , R / / = 1 R_{⊥} = 1, R_{//} = 1 R⊥=1,R//=1,但是其实, T ⊥ , T / / T_{⊥}, T_{//} T⊥,T// 其实并不等于0,而这种折射波仅仅是在媒质2中靠近界面的一薄层中存在,这确实和理想导体的那种全反射完全不同。
最后,我们一起简单看看什么是全折射,这里我们直接给出结论了:
当平面波从媒质1入射到媒质2时,若反射系数等于0,则电磁 功率全部折射到媒质2中,这种现象称为全折射。
当入射角等于布儒斯特角时,平行极化波将会发生全折射(这里需要特别小心——垂直极化波不会发生全折射),其中,布儒斯特角的形式如下:
当然,如果在 μ 1 ≠ μ 2 μ_1 ≠ μ_2 μ1=μ2 的情况下,布儒斯特角就是: θ i = a r c t a n n 2 n 1 θ_i = arctan\frac{n_2}{n_1} θi=arctann1n2
好啦!这就是本次连载的全部内容啦!不知不觉中,我们已经走过了第37个连载,最后一个连载,我打算分享一下这段时间的心路历程吧。