剑指Offer JZ08 跳台阶(递推)-java实现

题目来源:牛客网-剑指Offer专题题目地址:跳台阶

在这里插入图片描述

题目描述

一只青蛙一次可以跳上1级台阶,也可以跳上2级。求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果)。

题目解析

这是一道经典的递推题目,你可以想如果青蛙当前在第n级台阶上,那它上一步是在哪里呢?

显然,由于它可以跳1级台阶或者2级台阶,所以它上一步必定在第n-1,或者第n-2级台阶,也就是说它跳上n级台阶的跳法数是跳上n-1和跳上n-2级台阶的跳法数之和

在这里插入图片描述

**方法一:**面试别写型递推版实现,时间复杂度在这里插入图片描述

public class Solution {
    public int JumpFloor(int n) {
        if (n == 1) return 1; 
        if (n == 2) return 2;
        return JumpFloor(n - 1) + JumpFloor(n - 2);
    }
}

**方法二:**面试推荐型,自底向上型循环求解,时间复杂度为[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-ozIIoA4c-1621180425627)(https://cdn.nlark.com/yuque/0/2021/svg/2196885/1619534404154-944dd904-b6fe-4e2c-8ce7-76d6b4454de0.svg)]。

public class Solution {
    public int JumpFloor(int target) {
        // f[1] = 1, f[0] = 1 (f[0]是为了简便作答自己添加的)
        int a = 1, b = 1;
        for (int i = 2; i <= target; i++) {
            // 求f[i] = f[i - 1] + f[i - 2]
            a = a + b; // 这里求得的 f[i] 可以用于下次循环求 f[i+1]
            // f[i - 1] = f[i] - f[i - 2]
            b = a - b; // 这里求得的 f[i-1] 可以用于下次循环求 f[i+1]
        }
        return a;
    }
}

有小伙伴表示,方法二不太容易理解,这里做一下简单解释。其实就是自底向上求递推式的过程,这里再给出方法二原始的版本。

public class Solution {
    public int JumpFloor(int target) {
        if (target <= 1) {
            return 1;
        }
        // a 表示第 f[i-2] 项,b 表示第 f[i-1] 项
        int a = 1, b = 1, c = 0;
        for (int i = 2; i <= target; i++) {
            c = a + b; // f[i] = f[i - 1] + f[i - 2];
            // 为下一次循环求 f[i + 1] 做准备
            a = b; // f[i - 2] = f[i - 1]
            b = c; // f[i - 1] = f[i]
        }
        return c;
    }
}

其实,方法二就是将这里的if条件判断和变量c优化掉了而已。


如果本文对你有所帮助,要记得点赞哦~

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

是我,Zack

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值