算法设计经典练习——动态规划解最长不下降子序列

求最长不下降子序列 简单动态规划问题

题目
求最长不下降子序列

描述
设有由n(1≤n≤200)个不相同的整数组成的数列,记为:b(1)、b(2)、……、b(n)b(1)、b(2)、……、b(n)且b(i)≠b(j)(i≠j)b(i)≠b(j)(i≠j),若存在i<i2<i3<…<iei1<i2<i3<…<ie且有b(i1)<b(i2)<…<b(ie)b(i1)<b(i2)<…<b(ie)则称为长度为e的不下降序列。程序要求,当原数列出之后,求出最长的不下降序列。

  
例如13791638243718441921226315。
例中13161819212263就是一个长度为7的不下降序列,
同时也有79161819212263组成的长度为8的不下降序列。

输入格式
第一行为n,第二行为用空格隔开的n个整数。

输出格式
第一行为输出最大个数max(形式见样例);
第二行为max个整数形成的不下降序列,该题保证序列唯一

输入样例
14
13 7 9 16 38 24 37 18 44 19 21 22 63 15

输出样例
max=8
7 9 16 18 19 21 22 63

题目思路
简单的动态规划,简单推出状态转移方程,再利用dp数组即可。


#include <iostream>
#include <string.h>
using namespace std;

int ans[200];int Max=0,Max_f;int n,a[1000]={},dp[1000]={},tot=0;

void findans(int Max_f){
	//cout&lt;&lt;Max_f&lt;&lt;endl;
	if(ans[Max_f]==-1){
		return;
	} //终止条件 
	else {
		findans(ans[Max_f]);
		cout&lt;&lt;a[ans[Max_f]]&lt;&lt;" ";
	} //输出 
	return ;
}
int main(){
	memset(ans,-1,sizeof(ans)); //数组归零 
	
	cin&gt;&gt;n; //输入 
	for(int i=0;i&lt;n;i++){
		cin&gt;&gt;a[i]; dp[i]=1;
	} 
	
	for(int i=1;i&lt;n;i++){
		for(int j=0;j&lt;i;j++) 
			if(a[j]&lt;=a[i]){
					if(dp[j]+1&gt;dp[i])
					ans[i]=j; //记录前一个位置
					dp[i]=max(dp[j]+1,dp[i]); //状态转移方程 
			}
	}
	
	for(int i=0;i&lt;n;i++){
		 if(dp[i]&gt;Max){
		 	Max=dp[i];
		 	Max_f=i;
		 } 
	} //找出Max和Max的位置 
	
	cout&lt;&lt;"max="&lt;&lt;Max&lt;&lt;endl; //输出 
	findans(Max_f); //递归输出 
	cout&lt;&lt;a[Max_f]&lt;&lt;endl; //防止末尾空格 
	
	return 0;
	}

代码仅供参考,让我们共同学习!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值