算法设计与分析经典练习八——贪心算法

贪心算法的几个经典问题

   

贪心算法:贪心法顾名思义就是不断贪心的选取当前最优策略的计算方法。

下面介绍几种贪心问题

问题一:货币选择问题

问题描述:分别有1,5,10,50,100元,分别有5,2,2,3,5张纸币。问若要支付k元,则需要多少张纸币?

问题分析

我们只需要遵循“优先使用面值大的硬币”即可。

1.尽可能多的使用100元(即最大的);

2.余下部分尽可能多的使用50元;

3.余下部分尽可能多的使用10元;

4.余下部分尽可能多的使用5元;

5.余下部分使用1元;

代码如下:


    
    
  1. #include <iostream>
  2. #include <algorithm>
  3. using namespace std;
  4. const int N= 5;
  5. int Money[N]={ 5, 2, 2, 3, 5};
  6. int Value[N]={ 1, 5, 10, 50, 100};
  7. int solve(int money){
  8. int num= 0;
  9. for( int i=N -1;i> 0;i--){
  10. //c为使用纸币的张数,在需要用面值为vaule[i]的张数和已有张数里选取最小的;
  11. int c=min(money/Value[i],Money[i]);
  12. money=money-Value[i]*c;
  13. num+=c;
  14. }
  15. if(money> 0){
  16. num= -1;
  17. }
  18. return num;
  19. }
  20. int main(){
  21. int money;
  22. cin>>money; //输入一共需要支付多少钱
  23. int res=solve(money);
  24. if(res!= -1){
  25. cout<<res<< endl;
  26. } else{
  27. cout<< "no"<< endl;
  28. }
  29. return 0;
  30. }

结果:

若要支付520元,则需要7张纸币。


问题二:区间调度问题

问题描述:有n项工作,每项工作分别在Si开始,Ti结束。例如S={1,2,4,6,8},T={3,5,7,8,10}。对每项工作,你都可以选择与否,若选择参加,则必须至始至终参加全程参与,且参与工作的时间段不能有重叠。(如下图)


问题分析

我们把“在可选工作中,每次都选取结束时间最早的”策略作为贪心算法所遵循的规则。

例如,输入n=5,S={1,2,4,6,8},T={3,5,7,9,10};输出:3(选取工作为1,3,5)

代码如下:


    
    
  1. #include <stdio.h>
  2. #include <tchar.h>
  3. #include <queue>
  4. #include "iostream"
  5. using namespace std;
  6. //输入
  7. const int n = 5;
  8. int S[n]={ 1, 2, 4, 6, 8};
  9. int T[n]={ 3, 5, 7, 9, 10};
  10. pair< int, int> itv[n]; //对工作排序的pair数组
  11. int solve()
  12. {
  13. //对pair进行字典序比较
  14. //为了让结束时间早的工作排在前面,把T存入first,把S存入second
  15. for( int i = 0; i < n; i ++) {
  16. itv[i].first = S[i];
  17. itv[i].second = T[i];
  18. }
  19. sort(itv, itv + n);
  20. int count = 0; //选取的结果
  21. int t = 0; //最后所选工作的结束时间
  22. for( int i = 0; i < n; i ++) {
  23. if(t < itv[i].first) {
  24. count ++;
  25. t = itv[i].second;
  26. }
  27. }
  28. return count;
  29. }
  30. int main() {
  31. int k=solve();
  32. cout << k<< endl;
  33. return 0;
  34. }


问题三:字典序最小问题

问题描述:给定长度为N的字符串S,要构造一个长度为N字符串T。T是一个空串,反复执行下列任意操作:
->从S的头部删除一个字符,加到T的尾部;

->从S的尾部删除一个字符,加到T的尾部;

目标是要构造字典序尽可能小的字符串T。

PS:字典序是指从前到后比较两个字符串的大小的方法。首先比较第1个字符,如果不同则第1个字符较小的字符串更小,如果相同则继续比较第2个字符......反复继续,来比较整个字符串的大小。

问题分析:从字符串性质上看,无论T的末尾多大,只要前面部分的较小即可。

把‘不断取S得开头和末尾中较小的一个字符放到T的末尾’作为贪心法所遵循的策略。

我们可以有以下步骤:

1.按照字典序比较S和将S反转后的字符串S'。

2.如果S较小,从S的开头取出一个字,追加到T的末尾。

3.如果S'较小,从S的末尾取出一个字,追加到T的末尾。(如果相同,则取谁都可以)

例如:

输入   'ACDBCB', 

输出   'ABCBCD'   


代码如下:


    
    
  1. #include<cstdio>
  2. #include<cstring>
  3. #include<algorithm>
  4. #include<iostream>
  5. using namespace std;
  6. int main()
  7. {
  8. //输入
  9. int n= 6;
  10. char S[ 7]= "ACDBCB";
  11. int a= 0,b=n -1;
  12. while(a<=b){
  13. bool left= false;
  14. //把从左起和从右起的字符串比较
  15. for( int i= 0;a+i<=b;i++){
  16. if(S[a+i]<S[b-i]){
  17. left= true;
  18. break;
  19. } else if(S[a+i]>S[b-i]){
  20. left= false;
  21. break;
  22. }
  23. }
  24. //左右两边谁大输出谁
  25. if(left) putchar(S[a++]);
  26. else putchar(S[b--]);
  27. }
  28. return 0;
  29. }

  •                     代码仅供参考,让我们共同学习!   
    
利用Java编写的几种经典问题算法: 1.设a[0:n-1]是一个有n个素的数组,k(0<=k<=n-1)是一个非负整数。 试设计一个算法将子数组a[0:k]与a[k+1,n-1]换位。要求算法在最坏情况下耗时O(n),且只用到O(1)的辅助空间。 2.在一个圆形操场的四周摆放着n堆石子。现要将石子有次序地合并成一堆。规定每次只能选相邻的2堆石子合并成新的一堆,并将新的一堆石子数记为该次合并的得分。试设计一个算法,计算出将n堆石子合并成一堆的最小得分和最大得分,并分析算法的计算复杂性。 3.设磁盘上有n个文件f1,f2,…,fn,每个文件占用磁盘上的1个磁道。这n个文件的检索概率分别是p1,p2,…,pn,且 =1。磁头从当前磁道移到被检信息磁道所需的时间可用这2个磁道之间的径向距离来度量。如果文件fi存放在第i道上,1≦i≦n,则检索这n个文件的期望时间是对于所有的i<j,time+=pi*pj*d(i,j) 。其中d(i,j)是第i道与第j道之间的径向距离|i-j|。磁盘文件的最优存储问题要求确定这n个文件在磁盘上的存储位置,使期望检索时间达到最小。试设计一个解决问题算法,并分析算法的正确性与计算复杂度。 4.最小重量机器设计问题。设某一机器由n个部件组成,每一种部件可以从m个不同的供应商处购得。设wij是从供应商j处购得的部件i的重量,cij是相应的价格。试设计一个算法,给出总价格不超过c的最小重量机器设计。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值