kafka—生产者

一、消息发送原理

在消息发送的过程中,涉及到了两个线程——main 线程和 Sender 线程。在 main 线程中创建了一个缓冲双端队列 RecordAccumulator。main 线程将消息发送给 RecordAccumulator,Sender 线程不断从 RecordAccumulator 中拉取消息发送到 Kafka Broker。

在这里插入图片描述

工作流程

  1. kafka Producer生产者生产数据,首先在main线程中创建一个Produce对象,然后调用send方法发送数据,发送数据过程中通过拦截器(一般不用)、序列化器、分区器进行发送数据
  2. 数据发送到 缓冲双端队列(RecordAccumulator)中,内存总大小为32M,其中分区器会将数据进行分区,一个分区创建一个队列(DQueue),对每个队列传送数据,每个批次大小为16k,然后进行存储(整个过程都是在内存中完成的
  3. Sender 线程主动拉取双端队列的数据发送给kafka集群(前提满足下面两个条件的其中一个),kafka中的borker进行响应,如果borker没有及时响应则进行等待,最多可以拉取五次数据进行请求等待。

① batch.size:只有数据积累达到batch.size,sender才会发送数据。默认是16k
② linger.ms:如果数据未达到batch.size的默认大小,通过linger.ms设置等待的时间

  1. 当kafka集群收到数据以后会有一个应答机制(acks)级别如下:

0:生产者发送过来的数据,不需要等数据落盘应答
1:生产者发送过来的数据,Leader收到数据后应答
-1(all):生产者发送过来的数据,Leader和ISR(即所有的Follower)队列里面的所有节点收齐数据后应答。-1和all等价

  1. 如果应答信息为成功,生产者就会清除请求和清理对应分区的数据;如果应答失败,默认会一直重试直到成功为止(重试次数可以进行修改)

二、异步发送 API

同步:效率低,需要等待才能进行下一步操作

异步:效率高,不需要等待,可以同时进行多步操作

同步发送:必须等待上一批外部的数据发送完成,才能继续发送下一批数据

异步发送:将外部的数据一批一批的放入缓冲双端队列中,不需要等待

1.普通异步发送

案例说明:在IDEA创建工程,创建Kafka 生产者,采用异步的方式发送到 Kafka Broker

(1)导入依赖

<dependencies>
    <dependency>
        <groupId>org.apache.kafka</groupId>
        <artifactId>kafka-clients</artifactId>
        <version>3.0.0</version>
    </dependency>
</dependencies>

(2)启动集群及消费者

  1. 启动zookeeper
  2. 启动kafka集群
  3. 在hadoop103上启动消费者 主题为first1消费数据 命令为:bin/kafka-console-consumer.sh --bootstrap-server hadoop100:9092 --topic first1 --from-beginning

(3)创建不带回调函数的API代码

package com.kafka.producer;

import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.ProducerConfig;
import org.apache.kafka.clients.producer.ProducerRecord;
import org.apache.kafka.common.serialization.StringSerializer;

import java.util.Properties;

/**
 * @author wangbo
 * @version 1.0
 */
public class CustomProducer {
    public static void main(String[] args) {
        //说明kafka集群需要启动
        //在hadoop103上启动消费者,消费数据
        //bin/kafka-console-consumer.sh --bootstrap-server hadoop100:9092 --topic first1 --from-beginning
        
        //配置
        Properties properties = new Properties();

        //连接集群
        properties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG,"hadoop100:9092,hadoop102:9092");    //写两个节点是为了防止客户挂掉,另一个能够正常工作

        //指定对应的key和value的序列化类型
        properties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG,StringSerializer.class.getName());
        properties.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,StringSerializer.class.getName());

        // 1.创建kafka生成对象
        // <String,String> 表示 k的数据类型,和v的数据类型
        KafkaProducer<String, String> kafkaProducer = new KafkaProducer<String, String>(properties);

        // 2.发送数据
        for (int i = 0; i<5;i++){
            //第一个参数为生产者的主题名,第二个生产者生产的数据value,该方法还有其他配置选项
            kafkaProducer.send(new ProducerRecord<String, String>("first1","kafka"));
        }

        // 3.关闭资源
        kafkaProducer.close();
    }
}

2.带回调函数的异步发送

回调函数会在producer收到ack时调用,为异步调用,该方法有两个参数,分别是元数据信息(RecordMetadata)和异常信息(Exception),如果 Exception为null,说明消息发送成功,如果Exception不为null,说明消息发送失败

(1)(2)同上

(3)创建带回调函数的API代码

package com.kafka.producer;

import org.apache.kafka.clients.producer.*;
import org.apache.kafka.common.serialization.StringSerializer;

import java.util.Properties;

/**
 * @author wangbo
 * @version 1.0
 */

/**
 * 异步发送,创建带回调函数的API代码
 */
public class CustomProducerCallback {
    public static void main(String[] args) {
        //说明kafka集群需要启动
        //在hadoop103上启动消费者,消费数据
        //bin/kafka-console-consumer.sh --bootstrap-server hadoop100:9092 --topic first1 --from-beginning

        //配置
        Properties properties = new Properties();

        //连接集群
        properties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG,"hadoop100:9092,hadoop102:9092");    //写两个节点是为了防止客户挂掉,另一个能够正常工作

        //指定对应的key和value的序列化类型
        properties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG,StringSerializer.class.getName());
        properties.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,StringSerializer.class.getName());

        // 1.创建kafka生成对象
        // <String,String> 表示 k的数据类型,和v的数据类型
        KafkaProducer<String, String> kafkaProducer = new KafkaProducer<String, String>(properties);

        // 2.发送数据
        for (int i = 0; i<5;i++){
            //第一个参数为生产者的主题名,第二个生产者生产的数据value,    new Callback()创建回调函数
            kafkaProducer.send(new ProducerRecord<String, String>("first1", "kafka" + i), new Callback() {
                public void onCompletion(RecordMetadata recordMetadata, Exception e) {
                    if (e == null){
                        System.out.println("主题为:" + recordMetadata.topic() + " 分区为:" + recordMetadata.partition());
                    }
                }
            });
        }

        // 3.关闭资源
        kafkaProducer.close();
    }
}

三、同步发送 API

在send方法后面加一个调用get()方法即可

package com.kafka.producer;

import org.apache.kafka.clients.producer.*;
import org.apache.kafka.common.serialization.StringSerializer;

import java.util.Properties;
import java.util.concurrent.ExecutionException;

/**
 * @author wangbo
 * @version 1.0
 */

/**
 1. 同步发送
 */
public class CustomProducerSync {
    public static void main(String[] args) throws ExecutionException, InterruptedException {
        //配置
        Properties properties = new Properties();

        //连接集群
        properties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG,"hadoop100:9092,hadoop102:9092");    //写两个节点是为了防止客户挂掉,另一个能够正常工作

        //指定对应的key和value的序列化类型
        properties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG,StringSerializer.class.getName());
        properties.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,StringSerializer.class.getName());

        // 1.创建kafka生成对象
        // <String,String> 表示 k的数据类型,和v的数据类型
        KafkaProducer<String, String> kafkaProducer = new KafkaProducer<String, String>(properties);

        // 2.发送数据
        for (int i = 0; i<5;i++){
            //第一个参数为生产者的主题名,第二个生产者生产的数据value
            kafkaProducer.send(new ProducerRecord<String, String>("first1", "kafka" + i)).get();
        }

        // 3.关闭资源
        kafkaProducer.close();
    }
}

四、生产者分区

1.分区的好处

  1. 便于合理使用存储资源,每个Partition在一个Broker上存储,可以把海量的数据按照分区切割成一块一块数据存储在多台Broker上。合理控制分区的任务,可以实现负载均衡的效果。
  2. 提高并行度,生产者可以以分区为单位发送数据;消费者可以以分区为单位进行消费数据。

2. 生产者发送消息的分区策略

通过实现 ProducerRecord() 类的构造方法来确定分区

(1)指明partition的情况下,直接将指明的值作为partition值;
例如:partition=0,所有数据写入分区0

(2)没有指明partition值但有key的情况下,将key的hash值与topic的partition数进行取余得到partition值;
例如:key1的hash值=5, key2的hash值=6 ,topic的partition数=2,那 么key1 对应的value1写入1号分区,key2对应的value2写入0号分区。

(3)既没有partition值又没有key值的情况下,Kafka采用Sticky Partition(黏性分区器),会随机选择一个分区,并尽可能一直使用该分区,待该分区的batch(默认16k)已满或者已完成,Kafka再随机一个分区进行使用(和上一次的分区不同)
例如:第一次随机选择0号分区,等0号分区当前批次满了(默认16k)或者linger.ms设置的时间到, Kafka再随机一个分区进行使用(如果还是0会继续随机)

方式一:直接指明

注意:进行分区时,需要查看主题topic的分区数,如果是只有一个分区,那么只能指定的分区数为0

package com.kafka.producer;

import org.apache.kafka.clients.producer.*;
import org.apache.kafka.common.serialization.StringSerializer;

import java.util.Properties;

/**
 * @author wangbo
 * @version 1.0
 */

/**
 * 不同方式指定分区
 */
public class CustomProducerCallbackPartitions04 {
    public static void main(String[] args) {
        //配置
        Properties properties = new Properties();

        //连接集群
        properties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG,"hadoop100:9092,hadoop102:9092");    //写两个节点是为了防止客户挂掉,另一个能够正常工作

        //指定对应的key和value的序列化类型
        properties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG,StringSerializer.class.getName());
        properties.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,StringSerializer.class.getName());

        // 1.创建kafka生成对象
        // <String,String> 表示 k的数据类型,和v的数据类型
        KafkaProducer<String, String> kafkaProducer = new KafkaProducer<String, String>(properties);

        // 2.发送数据
        for (int i = 0; i<5;i++){
            /*
            第一个参数:生产者的主题名
            第二个参数:指定几号分区
            第三个参数:key的值
            第四个参数:value的值
            ctrl + p 可以查看其构造函数
             */

            //new Callback()创建回调函数
            kafkaProducer.send(new ProducerRecord<String, String>("first3",1 ,"","kafka" + i), new Callback() {
                public void onCompletion(RecordMetadata recordMetadata, Exception e) {
                    if (e == null){
                        System.out.println("主题为:" + recordMetadata.topic() + " 分区为:" + recordMetadata.partition());
                    }
                }
            });
        }

        // 3.关闭资源
        kafkaProducer.close();
    }
}

方式二:通过key的hash值与topic的partition数进行取余得到partition值

package com.kafka.producer;

import org.apache.kafka.clients.producer.*;
import org.apache.kafka.common.serialization.StringSerializer;

import java.util.Properties;

/**
 * @author wangbo
 * @version 1.0
 */

/**
 * 不同方式指定分区
 */
public class CustomProducerCallbackPartitions04 {
    public static void main(String[] args) {
        //配置
        Properties properties = new Properties();

        //连接集群
        properties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG,"hadoop100:9092,hadoop102:9092");    //写两个节点是为了防止客户挂掉,另一个能够正常工作

        //指定对应的key和value的序列化类型
        properties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG,StringSerializer.class.getName());
        properties.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,StringSerializer.class.getName());

        // 1.创建kafka生成对象
        // <String,String> 表示 k的数据类型,和v的数据类型
        KafkaProducer<String, String> kafkaProducer = new KafkaProducer<String, String>(properties);

        // 2.发送数据
        for (int i = 0; i<5;i++){
            /*
            ctrl + p 可以查看其构造函数
             */

            //new Callback()创建回调函数,以a的hash值与topic的partition数进行取余得到分区数partition
            kafkaProducer.send(new ProducerRecord<String, String>("first3","a","kafka" + i), new Callback() {
                public void onCompletion(RecordMetadata recordMetadata, Exception e) {
                    if (e == null){
                        System.out.println("主题为:" + recordMetadata.topic() + " 分区为:" + recordMetadata.partition());
                    }
                }
            });
        }

        // 3.关闭资源
        kafkaProducer.close();
    }
}

方式三:既没有指定分区也没指定key

package com.kafka.producer;

import org.apache.kafka.clients.producer.*;
import org.apache.kafka.common.serialization.StringSerializer;

import java.util.Properties;

/**
 * @author wangbo
 * @version 1.0
 */

/**
 * 不同方式指定分区
 */
public class CustomProducerCallbackPartitions04 {
    public static void main(String[] args) {
        //配置
        Properties properties = new Properties();

        //连接集群
        properties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG,"hadoop100:9092,hadoop102:9092");    //写两个节点是为了防止客户挂掉,另一个能够正常工作

        //指定对应的key和value的序列化类型
        properties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG,StringSerializer.class.getName());
        properties.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,StringSerializer.class.getName());

        // 1.创建kafka生成对象
        // <String,String> 表示 k的数据类型,和v的数据类型
        KafkaProducer<String, String> kafkaProducer = new KafkaProducer<String, String>(properties);

        // 2.发送数据
        for (int i = 0; i<5;i++){
            /*
            ctrl + p 可以查看其构造函数
             */

            //new Callback()创建回调函数
            kafkaProducer.send(new ProducerRecord<String, String>("first3","kafka" + i), new Callback() {
                public void onCompletion(RecordMetadata recordMetadata, Exception e) {
                    if (e == null){
                        System.out.println("主题为:" + recordMetadata.topic() + " 分区为:" + recordMetadata.partition());
                    }
                }
            });
        }

        // 3.关闭资源
        kafkaProducer.close();
    }
}

五、自定义分区器

首先定义一个myPartition类实现 Partitioner 接口,重写其中的方法

案例说明:如果数据包含kafka放入到1号分区,不包含放入2号分区(注意:主题的分区要有1,2号分区)

可以通过下面命令查看主题的详细信息:
bin/kafka-topics.sh --bootstrap-server hadoop100:9092 --describe --topic first3

myPatition类

package com.kafka.producer;

import org.apache.kafka.clients.producer.Partitioner;
import org.apache.kafka.common.Cluster;

import java.util.Map;

/**
 * @author wangbo
 * @version 1.0
 */

/**
 * topic 主题
 * key 消息的 key
 * keyBytes 消息的 key 序列化后的字节数组
 * value 消息的 value
 * valueBytes 消息的 value 序列化后的字节数组
 * cluster 集群元数据可以查看分区信息
 */

public class myPartitions05_1 implements Partitioner {
    public int partition(String topic, Object key, byte[] keyBytes, Object value, byte[] valueBytes, Cluster cluster) {        //获取数据
        String value1 = value.toString();

        int Partition1;

        if (value1.contains("kafka")){
            Partition1 = 1;
        }else {
            Partition1 = 2;
        }

        return Partition1;
    }

    public void close() {

    }

    public void configure(Map<String, ?> map) {

    }
}

CustomProducerCallbackPartitions05_2 类

package com.kafka.producer;

import org.apache.kafka.clients.producer.*;
import org.apache.kafka.common.serialization.StringSerializer;

import java.util.Properties;

/**
 * @author wangbo
 * @version 1.0
 */

/**
 * 不同方式指定分区
 */
public class CustomProducerCallbackPartitions05_2 {
    public static void main(String[] args) {
        //配置
        Properties properties = new Properties();

        //连接集群
        properties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG,"hadoop100:9092,hadoop102:9092");    //写两个节点是为了防止客户挂掉,另一个能够正常工作

        //指定对应的key和value的序列化类型
        properties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG,StringSerializer.class.getName());
        properties.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,StringSerializer.class.getName());

        //关联自定义分区器
        properties.put(ProducerConfig.PARTITIONER_CLASS_CONFIG,"com.kafka.producer.myPartitions05_1");

        // 1.创建kafka生成对象
        // <String,String> 表示 k的数据类型,和v的数据类型
        KafkaProducer<String, String> kafkaProducer = new KafkaProducer<String, String>(properties);

        // 2.发送数据
        for (int i = 0; i<5;i++){
            /*
            ctrl + p 可以查看其构造函数
             */

            //new Callback()创建回调函数
            kafkaProducer.send(new ProducerRecord<String, String>("first3","kafka1111" + i), new Callback() {
                public void onCompletion(RecordMetadata recordMetadata, Exception e) {
                    if (e == null){
                        System.out.println("主题为:" + recordMetadata.topic() + " 分区为:" + recordMetadata.partition());
                    }
                }
            });
        }

        // 3.关闭资源
        kafkaProducer.close();
    }
}

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

王博1999

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值