M2使用GPU版本的Pytorch

使用场景:

cuda是适配nvidia的GPU的,M1及以上芯片中的GPU适配的是mps,在Mac对应操作系统中已经具备,无需单独安装。只需要安装适配的pytorch即可。


python及pytorch版本要求

具备arm64的Python, pytorch>=1.12

确认当前mac电脑是否可用GPU

import torch
print(torch.backends.mps.is_available())
print(torch.backends.mps.is_built())
True#表示macOS版本支持
True#表示mps可用

使用

# 方法1:通过torch.device指定张量存储在GPU上   
X=torch.ones(2,3,device='mps:0')
# 方法2:通过to(divice)指定张量存储在GPU上  
X1=torch.ones(2,3).to('mps:0')
print(X1)
tensor([[1., 1., 1.],
        [1., 1., 1.]], device='mps:0')
#指定mps:1
Y=torch.ones(2,3,device='mps:1')
print(Y)
tensor([[1., 1., 1.],
        [1., 1., 1.]], device='mps:0')

注意:指定位置mps:1是无效的,原因是
Mac上使用torch.mps只能使用一块GPU,不支持数据并行

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值