Transformer模型结构解析与Python代码实现

本文首发于公众号【DeepDriving】,欢迎关注。

0. 前言

2017年,谷歌研究人员在《Attention Is All You Need》这篇论文中提出了Transformer模型,该模型最初是被用于机器翻译任务中。由于其良好的可并行性和强大的特征提取能力,Transformer模型在随后的几年中被用到自然语言处理、语音识别、计算机视觉等各个领域中,并表现出优异的性能。

本文基于论文的内容解读Transformer模型的各个组成部分,然后用Python实现一个完整的Transformer模型。

1. Transformer模型结构解析

1.1 模型总体架构

Transformer的总体架构如下图所示,模型包含一个编码器和解码器(分别对应下图中的左侧和右侧部分),编码器和解码器都是由一系列堆叠的注意力结构和全连接层组成。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

DeepDriving

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值