- 博客(42)
- 收藏
- 关注
原创 [NLP] transformers 使用指南
严格意义上讲 transformers 并不是 PyTorch 的一部分,然而 transformers 与 PyTorch 或 TensorFlow 结合的太紧密了,而且可以把 transformers 看成是 PyTorch 或 TensorFlow 的延伸,所以也在这里一并讨论了。transformers 内置了 17 种以 transformer 结构为基础的神经网络:T5 modelDistilBERT modelALBERT modelCamemBERT modelXLM-RoBE
2020-06-17 09:08:47 12805 1
原创 [NLP] TorchText 使用指南
TorchText 是 PyTorch 的一个功能包,主要提供文本数据读取、创建迭代器的的功能与语料库、词向量的信息,分别对应了 torchtext.data、torchtext.datasets 和 torchtext.vocab 三个子模块。本文参考了三篇文章。1. 语料库 torchtext.datasetsTorchText 内建的语料库有:Language ModelingWikiText-2WikiText103PennTreebankSentiment Analysis
2020-06-06 07:06:13 1885 2
原创 深度之眼 PyTorch 训练营第 4 期(13):hook 函数
我们知道,在计算图运行的过程中,中间变量的数据是不会被保留的。想要保存中间变量,一个方法是使用 tnesor.retain_grad = True,但是这样会使数据被永久保存,造成存储空间的消耗,即我们可能只需要用到中间变量的值一次,但它却被永久保存了。为了解决这个问题,PyTorch 引入了 hook 函数。hook 函数分为张量的 hook 函数和神经网络层的 hook 函数两种。1. 张量的 hook 函数Tensor.register_hook(hook)这个 hook 函数在每次计算反向
2020-06-02 01:37:33 490 1
原创 深度之眼 PyTorch 训练营第 4 期(12):TensorBoard
TensorBoard 是 TensorFlow 的神经网络可视化工具,被 PyTorch 拿来了。1. TensorBoard 安装TensorBoard 的安装有个坑,直接安装以后是不能用的,必须再安装 furtue 模块。我从来都没有遇到这个问题,因为我直接安装了 TensorFlow…2. 创建 TensorBoard 文件的接口想使用 TensorBoard,必须在硬盘上先创建一个 TensorBoard 数据文件,然后访问这个文件来查看 TensorBoard。创建 TensorBoar
2020-06-02 00:24:41 278
原创 深度之眼 PyTorch 训练营第 4 期(11):RNN
RNN(recurrent neural network)擅长处理序列内容,因此在 NLP 中应用较多。然而 RNN 的拓扑结构与 MLP、CNN 完全不同,因此学习起来会有很大的困扰。本文是介绍如何用锤子敲钉子的,而不是如何造锤子或者为什么要敲的。所以 RNN 的原理与使用场景在这里从略。然而了解 RNN 的工作原理对正确使用 RNN 大有裨益,所以在此附上参考资料 ,供读者参考。RNN 主要有三个实现:原始 RNN 和 RNN 的改进版 LSTM 和 GRU。一个循环神经网络主要由输入层、隐藏层(RN
2020-05-31 01:23:29 193
原创 深度之眼 PyTorch 训练营第 4 期 (10):CNN
往期汇总:PyTorch 折桂 1:张量的性质PyTorch 折桂 2:张量的运算 1PyTorch 折桂 3:张量的运算 2PyTorch 折桂 4:torch.autographPyTorch 折桂 5:PyTorch 模块总览 & torch.utils.dataPyTorch 折桂 6:torch.nn.ModulePyTorch 折桂 7:torch.nn 总览 & nn.Linear & 常用激活函数本文尽量不涉及 CNN(卷积神经网络)的原理,仅讨论
2020-05-28 21:51:28 1104
原创 深度之眼 PyTorch 训练营第 4 期 (9):torch.optim
文章目录1. 优化器1.1 [优化器的种类](https://zhuanlan.zhihu.com/p/64885176 "PyTorch 学习笔记(七):PyTorch的十个优化器")1.2 创建优化器1.3 优化器的属性2. 改变学习率1. 优化器优化器就是根据导数对参数进行更新的类,不同的优化器本质上都是梯度下降法,只是在实现的细节上有所不同。类似的,PyTorch 里的所有优化器都继承自 torch.optim.Optimizer 这个基类。torch.optim.Optimizer(para
2020-05-25 02:40:07 604
原创 深度之眼 PyTorch 训练营第 4 期(8):损失函数
文章目录1. 损失函数总览2. 回归损失函数3. 分类损失函数3.1 [交叉熵](https://charlesliuyx.github.io/2017/09/11/什么是信息熵、交叉熵和相对熵/ "【直观详解】信息熵、交叉熵和相对熵")3.2 分类损失函数3.3 总结1. 损失函数总览PyTorch 的 Loss Function(损失函数)都在 torch.nn.functional 里,也提供了封装好的类在 torch.nn 里。PyTorch 里有关有 18 个损失函数,常用的有 5 个,分别是
2020-05-19 06:31:58 2780 2
原创 深度之眼 PyTorch 训练营第 4 期 (7):torch.nn.init
文章目录1. torch.nn.init 概述2. 梯度消失和梯度爆炸3. `torch.nn.init.calculate_gain`4. Xavier initialization5. Kaiming initialization6. 其它初始化方法1. torch.nn.init 概述因为神经网络的训练过程其实是寻找最优解的过程,所以神经元的初始值非常重要。如果初始值恰好在最优解附近,神经网络的训练会非常简单。而当神经网络的层数增加以后,一个突出的问题就是梯度消失和梯度爆炸。前者指的是由于梯度接近
2020-05-19 01:49:39 686
原创 深度之眼 PyTorch 训练营第 4 期(6):torch.nn 总览 & 线性连接层 & 激活函数
1 torch.nn 总览相比 TensorFlow,PyTorch 算是一个非常轻量化的深度学习系统,与深度学习模型搭建相关的全部类全部在 torch.nn 这个子模块中。根据类的功能分类,常用的有如下十几个部分:Containers:容器类,如 torch.nn.Module;Convolution Layers:卷积层,如 torch.nn.Conv2d;Pooling Layers:池化层,如 torch.nn.MaxPool2d;Non-linear activations:非线性激活
2020-05-14 09:21:47 1157
原创 深度之眼 PyTorch 训练营第 4 期(5):构建模型 torch.nn.Module
本文中,我们看一看如何构建模型。创造一个模型分两步:构建模型和权值初始化。而构建模型又有“定义单独的网络层”和“把它们拼在一起”两步。1. torch.nn.Moduletorch.nn.Module 是所有 torch.nn 中的类的父类。我们来看一个非常简单的神经网络:class SimpleNet(nn.Module): def __init__(self, x): super(SimpleNet,self).__init__() self.fc = n
2020-05-12 03:53:24 389
原创 深度之眼 PyTorch 训练营第 4 期(4)- 文件读取系统 torch.utils.data
搭建神经网络以前还需要载入、构建数据。PyTorch 提供了非常方便的模块 torch.utils.data 来完成相关的任务。1. 总览构建一个可以被 PyTorch 利用的数据集分两步:划分数据集、数据采样器(可选),构建 PyTorch 数据集(可选)构建数据集的读取器PyTorch 支持下面两种数据集:map-style datasets(映射风格的数据集)需要重写 _...
2020-05-05 02:38:44 742
原创 深度之眼 PyTorch 训练营第 4 期(3)- 自动求导系统 torch.autograd
文章目录1. derivative(导数)的概述2. chain rule3. 张量的反向传播3.1 运算结果为 0 维张量的反向传播3.2 运算结果为 1 维以上张量的反向传播4. 张量的显式求导 `torch.augograd.grad`5. 张量的显式反向传播计算`torch.autograd.backward`神经网络的训练过程其实就是一个不断更新权重的过程,而更新权重要使用反向传播,而...
2020-05-03 07:49:11 427
原创 深度之眼 PyTorch 训练营第 4 期(2)- 张量的性质
文章目录1. 计算图1.1 动态图1.2 静态图1.3 计算图示例2. 张量的运算2.1 张量的四则运算2.2 对数,指数,幂函数运算2.3 三角函数2.4 变换函数2.5 降维函数2.6 比较函数3. 张量的索引,变换,拼接与拆分3.1 张量的索引3.2 张量的变换3.3 张量的拼接3.4 张量的拆分1. 计算图一个深度学习模型是由“计算图”构成的。所谓计算图是一个有向无环图(directe...
2020-04-30 09:30:26 569
原创 深度之眼 PyTorch 训练营第 4 期(1)- 张量的创建
安装 PyTorch(macOS 操作系统下)pip install torch查询 PyTorch 版本import torchprint(torch.__version__)# 1.5.0张量是什么?张量是一个多维数组:- 标量是一个 0 维数组;- 向量是一个 1 维数组;- 矩阵是一个 2 维张量。torch.tensor 有什么功能?最重要的功能是可以求导:...
2020-04-28 04:38:32 499
原创 [Python] 经验总结 1:数据框的切片
文章目录原生风格切片单列切片多列切片行pandas 风格切片df.loc["indexes", "columns"] 基于行、列的名称切片df.iloc["indexes", "columns"] 基于行、列的索引切片每个人都知道 Python 是一种高效、简洁、优雅的语言,。然而 Python 也有很多坑,现在老宅开一个新系列,分享老宅在学习和实践中总结的经验和教训,不定期分享。第一个经验就...
2019-06-18 12:01:01 4437
原创 [Python] 机器学习模块 sklearn 学习笔记
本文是《盘一盘 Python 系列 8 - Sklearn》的学习笔记。文章目录API估计器预测器转换器高级 APIensemble 估计器Model Selection 估计器交叉验证网格追踪和随机追踪Pipeline 估计器sklearn 主要函数一览sklearn.clustersklearn.decompositionsklearn.ensemblesklearn.imputesklea...
2019-06-13 00:57:45 876
原创 [Python] 常用模块(6):matplotlib
Python 常用模块系列:[Python] 常用模块(1):内建模块 – random & datetime[Python] 常用模块(2):内建模块 – re 以及正则表达式[Python] 常用模块(3):内建模块 – math & itertools[Python] 常用模块(4):NumPy 上[Python] 常用模块(4):NumPy 中[Python]...
2019-06-11 22:56:28 356
原创 [Python] 常用模块(5):pandas 9
Python 常用模块系列:[Python] 常用模块(1):内建模块 – random & datetime[Python] 常用模块(2):内建模块 – re 以及正则表达式[Python] 常用模块(3):内建模块 – math & itertools[Python] 常用模块(4):NumPy 上[Python] 常用模块(4):NumPy 中[Python]...
2019-06-11 06:10:25 443
原创 [Python] 常用模块(5):pandas 8
Python 常用模块系列:[Python] 常用模块(1):内建模块 – random & datetime[Python] 常用模块(2):内建模块 – re 以及正则表达式[Python] 常用模块(3):内建模块 – math & itertools[Python] 常用模块(4):NumPy 上[Python] 常用模块(4):NumPy 中[Python]...
2019-06-10 23:40:33 672
原创 [Python] 常用模块(5):pandas 7
Python 常用模块系列:[Python] 常用模块(1):内建模块 – random & datetime[Python] 常用模块(2):内建模块 – re 以及正则表达式[Python] 常用模块(3):内建模块 – math & itertools[Python] 常用模块(4):NumPy 上[Python] 常用模块(4):NumPy 中[Python]...
2019-06-10 06:24:59 149
原创 [Python] 常用模块(5):pandas6
Python 常用模块系列:[Python] 常用模块(1):内建模块 – random & datetime[Python] 常用模块(2):内建模块 – re 以及正则表达式[Python] 常用模块(3):内建模块 – math & itertools[Python] 常用模块(4):NumPy 上[Python] 常用模块(4):NumPy 中[Python]...
2019-06-10 06:23:13 176
原创 [Python] 常用模块(5):pandas 5
Python 常用模块系列:[Python] 常用模块(1):内建模块 – random & datetime[Python] 常用模块(2):内建模块 – re 以及正则表达式[Python] 常用模块(3):内建模块 – math & itertools[Python] 常用模块(4):NumPy 上[Python] 常用模块(4):NumPy 中[Python]...
2019-06-10 03:06:23 228
原创 [Python] 常用模块(5):pandas 4
Python 常用模块系列:[Python] 常用模块(1):内建模块 – random & datetime[Python] 常用模块(2):内建模块 – re 以及正则表达式[Python] 常用模块(3):内建模块 – math & itertools[Python] 常用模块(4):NumPy 上[Python] 常用模块(4):NumPy 中[Python]...
2019-06-09 10:25:18 241
原创 [Python] 常用模块(5):pandas 3
Python 常用模块系列:[Python] 常用模块(1):内建模块 – random & datetime[Python] 常用模块(2):内建模块 – re 以及正则表达式[Python] 常用模块(3):内建模块 – math & itertools[Python] 常用模块(4):NumPy 上[Python] 常用模块(4):NumPy 中[Python]...
2019-06-09 10:24:32 246
原创 [Python] 常用模块(5):pandas 2
Python 常用模块系列:[Python] 常用模块(1):内建模块 – random & datetime[Python] 常用模块(2):内建模块 – re 以及正则表达式[Python] 常用模块(3):内建模块 – math & itertools[Python] 常用模块(4):NumPy 上[Python] 常用模块(4):NumPy 中[Python]...
2019-06-07 22:24:23 320
原创 [Python] 常用模块(5):pandas 1
Python 常用模块系列:[Python] 常用模块(1):内建模块 – random & datetime[Python] 常用模块(2):内建模块 – re 以及正则表达式[Python] 常用模块(3):内建模块 – math & itertools[Python] 常用模块(4):NumPy 上[Python] 常用模块(4):NumPy 中[Python]...
2019-06-07 11:04:59 241
原创 [Python] 常用模块(4):NumPy 下
Python 常用模块系列:[Python] 常用模块(1):内建模块 – random & datetime[Python] 常用模块(2):内建模块 – re 以及正则表达式[Python] 常用模块(3):内建模块 – math & itertools[Python] 常用模块(4):NumPy 上[Python] 常用模块(4):NumPy 中[Python]...
2019-06-07 11:04:08 124
原创 [Python] 常用模块(4):NumPy 中
Python 常用模块系列:[Python] 常用模块(1):内建模块 – random & datetime[Python] 常用模块(2):内建模块 – re 以及正则表达式[Python] 常用模块(3):内建模块 – math & itertools[Python] 常用模块(4):NumPy 上[Python] 常用模块(4):NumPy 中(本文)[Pyt...
2019-06-07 11:02:49 339
原创 [Python] 常用模块(4):NumPy 上
Python 常用模块系列:[Python] 常用模块(1):内建模块 – random & datetime[Python] 常用模块(2):内建模块 – re 以及正则表达式[Python] 常用模块(3):内建模块 – math & itertools(本文)[Python] 常用模块(4):NumPy 上[Python] 常用模块(4):NumPy 下[Pyt...
2019-06-06 04:26:01 321
原创 [Python] 常用模块(3):内建模块 -- math & itertools
[Python] 常用模块系列:[Python] 常用模块(1):内建模块 – random & datetime[Python] 常用模块(2):内建模块 – re 以及正则表达式[Python] 常用模块(3):内建模块 – math & itertools(本文)[Python] 常用模块(4):numpy[Python] 常用模块(5):pandas[Pyth...
2019-06-04 23:06:38 117
原创 [Python] 常用模块(2):内建模块 -- re 以及正则表达式
[Python] 常用模块系列:[Python] 常用模块(1):内建模块 – random & datetime[Python] 常用模块(2):内建模块 – re 以及正则表达式(本文)[Python] 常用模块(3):内建模块 – math & itertools[Python] 常用模块(4):numpy[Python] 常用模块(5):pandas[Pyth...
2019-06-04 08:22:02 129
原创 [Python] 常用模块(1):内建模块 -- random & datetime
[Python] 常用模块系列:[Python] 常用模块(1):内建模块 – random & datetime(本文)[Python] 常用模块(2):内建模块 – re 以及正则表达式[Python] 常用模块(3):内建模块 – math & itertools[Python] 常用模块(4):numpy[Python] 常用模块(5):pandas[Pyth...
2019-06-03 01:00:23 195
原创 [Python] 入门(10):Python 基础 -- 面向对象编程
往期回顾:[Python] 入门(1):安装 Python 及必要组件[Python] 入门(2):Python 基础 – 变量[Python] 入门(3):Python 基础 – 内建函数[Python] 入门(4):Python 基础 – 列表和词典的方法[Python] 入门(5):Python 基础 – 字符串的方法[Python] 入门(6):Python 基础 – Pyt...
2019-06-03 00:59:27 411
原创 [Python] 入门(9):Python 基础 -- 字符串格式化
往期回顾:[Python] 入门(1):安装 Python 及必要组件[Python] 入门(2):Python 基础 – 变量[Python] 入门(3):Python 基础 – 内建函数[Python] 入门(4):Python 基础 – 列表和词典的方法[Python] 入门(5):Python 基础 – 字符串的方法[Python] 入门(6):Python 基础 – Pyt...
2019-06-02 22:25:30 240
原创 [Python] 入门(8):Python 基础 -- 解析式,生成器和程序错误
往期回顾:[Python] 入门(1):安装 Python 及必要组件[Python] 入门(2):Python 基础 – 变量[Python] 入门(3):Python 基础 – 内建函数[Python] 入门(4):Python 基础 – 列表和词典的方法[Python] 入门(5):Python 基础 – 字符串的方法[Python] 入门(6):Python 基础 – Pyt...
2019-06-02 22:24:35 271
原创 [Python] 入门(7):Python 基础 -- 自定义函数
往期回顾:[Python] 入门(1):安装 Python 及必要组件[Python] 入门(2):Python 基础 – 变量[Python] 入门(3):Python 基础 – 内建函数[Python] 入门(4):Python 基础 – 列表和词典的方法[Python] 入门(5):Python 基础 – 字符串的方法[Python] 入门(6):Python 基础 – 循环,...
2019-06-02 22:23:48 529
原创 [Python] 入门(6):Python 基础 -- 循环,条件和迭代器
往期回顾:[Python] 入门(1):安装 Python 及必要组件[Python] 入门(2):Python 基础 – 变量[Python] 入门(3):Python 基础 – 内建函数[Python] 入门(4):Python 基础 – 列表和词典的方法[Python] 入门(5):Python 基础 – 字符串的方法for 循环假如你有一个列表 lst = [“apple...
2019-06-02 22:22:54 387
原创 [Python] 入门(5):Python 基础 -- 字符串的方法
往期回顾:[Python] 入门(1):安装 Python 及必要组件[Python] 入门(2):Python 基础 – 变量[Python] 入门(3):Python 基础 – 内建函数[Python] 入门(4):Python 基础 – 列表和词典的方法字符串的处理是 Python 中很重要的一部分,因此它的方法最多。str.capitalize()将字符串的首字符大写,...
2019-06-02 22:21:24 180
原创 [Python] 入门(4):Python 基础 -- 列表和词典的方法
往期回顾:[Python] 入门(1):安装 Python 及必要组件[Python] 入门(2):Python 基础 – 变量[Python] 入门(3):Python 基础 – 内建函数Python 中的方法的语法是 obj.method()。大家可能注意到了,方法是随着对象的变化而不同的,因此要根据对象的性质分开说。另外,有些对象还有属性,查询对象的属性的语法是 obj.att...
2019-06-02 22:20:37 171
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人