typora-copy-images-to: Khan Academy
文章目录
-
- @[toc] Khan Academy
- Chapter 2 —— Vectors
- Vector Basis
- Equivalent Vectors
- Components of vectors
- Magnitude of Vectors
- Scalar multiplication
- Adding and subtracting vectors
- Graphically Adding and subtracting vectors
- Practice :Graphically adding and subtracting vectors
- Adding vectors algebraically & graphically
- Combined vector operations
- Vector operations review
- Unit vectors intro
- Worked example: finding unit vector with given direction
- Worked example: Scaling unit vectors
- Direction of vectors from components: 1st & 2nd quadrants
- Direction of vectors from components: 3rd & 4th quadrants
- Vectors forms review
- Vector components from magnitude & direction
- Vector components from magnitude & direction (advanced)
- Vector magnitude and direction review
Khan Academy
文章目录
- @[toc] Khan Academy
- Chapter 2 —— Vectors
- Vector Basis
- Equivalent Vectors
- Components of vectors
- Magnitude of Vectors
- Scalar multiplication
- Adding and subtracting vectors
- Graphically Adding and subtracting vectors
- Practice :Graphically adding and subtracting vectors
- Adding vectors algebraically & graphically
- Combined vector operations
- Vector operations review
- Unit vectors intro
- Worked example: finding unit vector with given direction
- Worked example: Scaling unit vectors
- Direction of vectors from components: 1st & 2nd quadrants
- Direction of vectors from components: 3rd & 4th quadrants
- Vectors forms review
- Vector components from magnitude & direction
- Vector components from magnitude & direction (advanced)
- Vector magnitude and direction review
Chapter 2 —— Vectors
Vector Basis
- A vector is a quantity that can be described as having both magnitude and direction
Equivalent Vectors
Components of vectors
Magnitude of Vectors
Scalar multiplication
Adding and subtracting vectors
Graphically Adding and subtracting vectors
Practice :Graphically adding and subtracting vectors
Adding vectors algebraically & graphically
To add the vectors (x₁,y₁) and (x₂,y₂), we add the corresponding components from each vector: (x₁+x₂,y₁+y₂). Here’s a concrete example: the sum of (2,4) and (1,5) is (2+1,4+5), which is (3,9). There’s also a nice graphical way to add vectors, and the two ways will always result in the same vector…
Combined vector operations
Watch Sal find new vector 3u + 1/5w when u = (2, -1) and w = (-5, 5).
Vector operations review
Unit vectors intro
Unit vectors are vectors whose magnitude is exactly 1 unit. They are very useful for different reasons. Specifically, the unit vectors [0,1] and [1,0] can form together any other vector
Worked example: finding unit vector with given direction
Worked example: Scaling unit vectors
Watch Sal scale up a unit vector to have a magnitude greater than 1
Direction of vectors from components: 1st & 2nd quadrants
Sal first finds the direction angle of a vector in the first quadrant, then moves onto a trickier one in the second quadrant
Direction of vectors from components: 3rd & 4th quadrants
Sal finds the direction angle of a vector in the third quadrant and a vector in the fourth quadrant
Vectors forms review
Vector components from magnitude & direction
practice: