算法分析与设计5_动态规划

动态规划

动态规划算法通常用于求解具有某种最优性质的问题。
在这类问题中,可能会有许多可行解。
每一个解都对应于一个值,我们希望找到具有最优值的解。
基本思想是将待求解问题分解成若干个子问题,先求解子问题,然后从这些子问题的解得到原问题的解。
适合于用动态规划求解的问题,经分解得到子问题往往不是互相独立的。若用分治法来解这类问题,则分解得到的子问题数目太多,有些子问题被重复计算了很多次。
如果我们能够保存已解决的子问题的答案,而在需要时再找出已求得的答案,这样就可以避免大量的重复计算,节省时间。
我们可以用一个表来记录所有已解的子问题的答案。不管该子问题以后是否被用到,只要它被计算过,就将其结果填入表中。
这就是动态规划法的基本思路。
具体的动态规划算法多种多样,但它们具有相同的填表格式。

找出最优解的性质,并刻画其结构特征;
递归地定义最优值(写出动态规划方程);
以自底向上的方式计算出最优值;
根据计算最优值时得到的信息,构造一个最优解。
步骤1~3是动态规划算法的基本步骤。
在只需要求出最优值的情形,步骤4可以省略;
若需要求出问题的一个最优解,则必须执行步骤4。

动态规划算法的有效性依赖于问题本身所具有的两个重要性质:
最优子结构:
当问题的最优解包含了其子问题的最优解时,称该问题具有最优子结构性质。
重叠子问题:
在用递归算法自顶向下解问题时,每次产生的子问题并不总是新问题,有些子问题被反复计算多次。动态规划算法正是利用了这种子问题的重叠性质,对每一个子问题只解一次,而后将其解保存在一个表格中,在以后尽可能多地利用这些子问题的解。

最长公共子序列

若给定序列X={x1,x2,…,xm},则另一序列Z={z1,z2,…,zk},是X的子序列是指存在一个严格递增下标序列{i1,i2,…,ik}使得对于所有j=1,2,…,k有:zj=xij。
例如,序列Z={B,C,D,B}是序列X={A,B,C,B,D,A,B}的子序列,相应的递增下标序列为{2,3,5,7}。
给定2个序列X和Y,当另一序列Z既是X的子序列又是Y的子序列时,称Z是序列X和Y的公共子序列。
给定2个序列X={x1,x2,…,xm}和Y={y1,y2,…,yn},找出X和Y的最长公共子序列。
设序列X={x1,x2,…,xm}和Y={y1,y2,…,yn}的最长公共子序列为Z={z1,z2,…,zk} ,则
若xm=yn,则zk=xm=yn,且zk-1是xm-1和yn-1的最长公共子序列。
若xm≠yn且zk≠xm,则Z是xm-1和Y的最长公共子序列。
若xm≠yn且zk≠yn,则Z是X和yn-1的最长公共子序列。

#define NUM 100
int c[NUM][NUM];
int b[NUM][NUM];
void LCSLength (int m, int n, const char x[],char y[])
{  
  int i,j;
  //数组c的第0行、第0列置0
  for (i = 1; i <= m; i++) c[i][0] = 0;
  for (i = 1; i <= n; i++) c[0][i] = 0;
  //根据递推公式构造数组c
  for (i = 1; i <= m; i++)
  for (j = 1; j <= n; j++)
  {
	if (x[i]==y[j]) 
	  {c[i][j]=c[i-1][j-1]+1; b[i][j]=1; }		//↖
	else if (c[i-1][j]>=c[i][j-1]) 
		{c[i][j]=c[i-1][j]; b[i][j]=2; }		//↑
	else { c[i][j]=c[i][j-1]; b[i][j]=3; }			//←
  }
}
void LCSLength (int m, int n, const char x[],char y[])
{  
  int i,j;
  //数组c的第0行、第0列置0
  ……;
  //根据递推公式构造数组c
  for (i = 1; i <= m; i++)
  for (j = 1; j <= n; j++)
  {
	if (x[i]==y[j]) 
	  {c[i][j]=c[i-1][j-1]+1; b[i][j]=1; }		//↖
	else if (c[i-1][j]>=c[i][j-1] ) 
		{c[i][j]=c[i-1][j]; b[i][j]=2; }		//↑
	else { c[i][j]=c[i][j-1]; b[i][j]=3; }			//←
  }
}
void LCS(int i,int j,char x[])
{
	if (i ==0 || j==0) return;
	if (b[i][j]== 1){ LCS(i-1,j-1,x);  printf("%c",x[i]); }
	else if (b[i][j]== 2) LCS(i-1,j,x);
	else LCS(i,j-1,x);
}
计算最大子段和的动态规划算法
#define NUM 1001
int a[NUM];
int MaxSum(int n)
{
	int sum=0; 
	int b=0;
	for (int i=1;i<=n;i++)
	{
		if (b>0) b+=a[i]; else b=a[i];
		if (b>sum) sum=b;
	}
	return sum;
}
int main()
{
	//......
	return 0;
}
0-1背包问题

给定一个物品集合s={1,2,3,…,n},物品i的重量是wi,其价值是vi,背包的容量为W,即最大载重量不超过W。在限定的总重量W内,我们如何选择物品,才能使得物品的总价值最大。
如果物品不能被分割,即物品i要么整个地选取,要么不选取;
不能将物品i装入背包多次,也不能只装入部分物品i,则该问题称为0—1背包问题。
如果物品可以拆分,则问题称为背包问题,适合使用贪心算法。
#define NUM 50 //物品数量的上限
#define CAP 1500 //背包容量的上限
int w[NUM]; //物品的重量
int v[NUM]; //物品的价值
int p[NUM][CAP]; //用于递归的数组
//形参c是背包的容量W,n是物品的数量

0-1背包问题的动态规划算法
void knapsack(int c, int n) 
{ 
  //计算递推边界
  int jMax=min(w[n]-1,c); 		//分界点
  for( int j=0; j<=jMax; j++)   p[n][j]=0; 
  for( int j=w[n]; j<=c; j++)    p[n][j]=v[n];
  for( int i=n-1; i>1; i--) 		//计算递推式
  { 
	jMax=min(w[i]-1,c);
	for( int j=0; j<=jMax; j++) 
	  p[i][j]=p[i+1][j]; 
	for(int j=w[i]; j<=c; j++) 
	  p[i][j]=max(p[i+1][j], p[i+1][j-w[i]]+v[i]); 
  } 
  p[1][c]=p[2][c]; 			//计算最优值
  if (c>=w[1])   p[1][c]=max(p[1][c], p[2][c-w[1]]+v[1]); 
}
0-1背包问题的最优解
void traceback( int c, int n, int x[ ]) 
{ 
 for(int i=1; i<n; i++) 
 {
  if (p[i][c]==p[i+1][c]) x[i]=0; 
  else { x[i]=1; c-=w[i]; } 
 }
 x[n]=(p[n][c])? 1:0; 
}
拦截导弹

问题描述
  某国为了防御敌国的导弹袭击,发展出一种导弹拦截系统。但是这种导弹拦截系统有一个缺陷:虽然它的第一发炮弹能够到达任意的高度,但是以后每一发炮弹都不能高于前一发的高度。某天,雷达捕捉到敌国的导弹来袭。由于该系统还在试用阶段,所以只有一套系统,因此有可能不能拦截所有的导弹。

输入导弹依次飞来的高度(雷达给出的高度数据是不大于30000的正整数),计算这套系统最多能拦截多少导弹,如果要拦截所有导弹最少要配备多少套这种导弹拦截系统。
输入格式
  一行,为导弹依次飞来的高度
输出格式
  两行,分别是最多能拦截的导弹数与要拦截所有导弹最少要配备的系统数

样例输入
389 207 155 300 299 170 158 65

样例输出
6
2

#include <iostream>
#include <algorithm>
#include <cstdio>
using namespace std;

#define M 1010
int f_down[M], f_up[M], a[M], n;
int ans_down, ans_up;

int main() {
	while (cin >> a[++n]) f_down[n] = f_up[n] = 1;
	n--;
	for (int i = 2; i <= n; i++)
	for (int j = 1; j < i; j++) {
		if (a[i] > a[j]) f_up[i] = max(f_up[i], f_up[j] + 1);//最长不上升序列
		if (a[i] <= a[j]) f_down[i] = max(f_down[i], f_down[j] + 1);//最长不下降序列
	}
	for (int i = 1; i <= n; i++) {
		ans_down = max(ans_down, f_down[i]);
		ans_up = max(ans_up, f_up[i]);
	}
	printf("%d\n%d", ans_down, ans_up);
	return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值