垃圾回收算法
标记清楚算法
- 执行过程
- 当堆中有效内存空间被耗尽的时候,就会停止整个程序(stop the world),然后进行两项工作,第一项是标记,第二项是清理。
- 标记阶段:
- 垃圾回收器从根对象进行遍历,标记所有被引用的对象,一般是在对象的header中记录可达对象
- 清除阶段
- 垃圾回收器对堆内存从头到尾进行线性遍历,如果发现某个对象在其Header中没有标记为可达对象,则进行回收
- 垃圾回收器对堆内存从头到尾进行线性遍历,如果发现某个对象在其Header中没有标记为可达对象,则进行回收
- 缺点:
- 效率不算高
- 在进行GC的时候,需要停止整个应用程序,导致用户体验差
- 这种方式清理出来的空闲内存不是连续的,产生内存碎片,需要维护一个空闲列表
- 何为清楚?
- 这里所谓的清楚并不是真的置空,而是把需要清除的对象地址保存在空闲的地址列表里,下次有新对象需要加载时,判断垃圾的位置空间是否足够,如果足够,就存放。
复制算法
- 为了解决标记-清除算法在垃圾收集效率方面的缺陷,使用双存储区的来完成垃圾收集,该算法被称呼为复制算法
- 核心的思想:
- 将活着的内存空间分为两块,每次只使用其中一块,在垃圾回收时将正在使用的内存中的存活对象复制到未被使用的内存中,之后清楚正在使用的内存块中的所有对象,交换两个内存的角色,最后完成垃圾回收
- 将活着的内存空间分为两块,每次只使用其中一块,在垃圾回收时将正在使用的内存中的存活对象复制到未被使用的内存中,之后清楚正在使用的内存块中的所有对象,交换两个内存的角色,最后完成垃圾回收
- 优点:
- 没有标记和清除过程,实现简单,运行高效
- 复制过去以后保证空间的连续性,不会出现"碎片"问题
- 缺点:
- 此算法的缺点也很明显,就是需要两倍的内存空间
- 对于G1这种分拆成大量region的GC,复制而不是移动,意味着GC需要维护region之间对象引用关系,不管是内存占用或者时间开销也不小
- 场景:
- 如果系统中的垃圾对象很多,复制算法需要复制的存活对象数量并不会太大,或者说非常低才行
- 特别适合垃圾对象很多,存活对象很少的场景;例如:Young区的Survivor0和Survivor1区
- 在新生代,对常规应用的垃圾回收,一次通常可以回收70%-99%的内存空间,回收性价比很高,所以现在商业虚拟机都是用这种收集算法回收新生代
标记压缩算法
- 复制算法的高效性是建立在存活的对象少、垃圾对象多的前提下。这种情况在新生代经常发生,但是老年代,更常见的情况是大部分对象都是存活对象。如果依然使用复制算法,由于存活对象较多,复制的成本也将很高。因此,基于老年代垃圾回收的特性,需要使用其他的算法。
- 标记-清楚算法的确可以应用在老年代,但是该算法不仅执行效率低下,而且在执行完内存回收后还会产生内存碎片,所以JVM的设计者在此基础上进行概念,标记-压缩算法由此产生。
- 执行过程
- 第一阶段和标记清除算法一样,从根节点开始标记所有被引用对象
- 第二阶段将所有的存活对象压缩到内存的一端,按顺序排放,之后,清理边界外所有的空间(垃圾对象)
- 标记-压缩算法
- 最终效果等同于标记-清楚算法执行完成后,再进行一次内存碎片整理,因此,也可以把他称为标记-清楚-压缩算法
- 二者的本质差异在于标记-清楚算法是一种非移动式的回收算法,标记-压缩是移动式的
- 标记的存活对象将会被整理,按照内存地址依次排列,而未被标记的内存会被清理掉。如此一来,当我们需要给新对象分配内存时,JVM只需要持有一个内存的起始地址即可,这比维护一个空闲列表显然少了许多开销
- 优点
- 消除了标记清除算法当中,内存区域分散的缺点,我们需要给新对象分配内存时,jvm只需要持有一个内存的起始地址即可。
- 清除了复制算法当中,内存减半的高额代价
- 缺点
- 从效率上来说,标记-压缩算法要低于复制算法
- 移动对象的同时,如果对象被其他对象引用,则还需要调整引用的地址
- 移动过程中,需要全程暂停用户应用程序。即: stop the world
对比三种算法
- 效率来说,复制算法是当之无愧的老大,但是却浪费太多内存。
- 为了尽量兼顾上面提到的三个指标,标记-压缩算法相对来说更平滑一些,但是效率上不尽人意,他比复制算法多了一个标记的阶段,比标记-清除多了一个整理内存的阶段
分代收集算法
- 分代收集算法,是基于不同的对象的生命周期不一样而来,不同生命周期的对象可以采取不同的收集方式,以便提高回收率。
- 一般把Java堆分为新生代和老年代,这样可以根据各个年代的特点使用不同回收算法,以便提高垃圾回收的效率,举例:(Java程序运行过程中,会产生大量的对象,其中有些对象与业务相关,因此生命周期较长,但还有些对象,主要是程序运行过程中生成的临时变量,比如:String对象,这些对象的生命周期较短,系统会大量产生这些对象,有些对象甚至只用一次就被回收)
- 在Hotspot中,基于分代的概念,Gc所使用的内存回收算法必须结合新生代和老年代各自的特点
- 年轻代 (Young Gen)
- 年轻代特点:区域相对老年代较小,对象生命周期较短、存活率低、回收频繁
- 这种情况复制算法的回收整理,速度是最快的,复制算法的效率只和当前存活对象大小有关,因此很适用于年轻代的回收。而复制算法内存利用率不高的问题,通过hotspot中的两个survivor的设计得到了缓解
- 老年代(Tenured Gen)
- 老年代特点:区域较大,对象生命周期长,存活率高,回收不及年轻代频繁
- 这种情况存在大量存活率高的对象,复制算法明显变得不合适,一般是由标记-清楚或者标记-清除-整理的混合实现
- Mark阶段的开销与存活对象的数量成正比
- Sweep阶段的开销与所管理的区域大小成正比
- Copact阶段的开销与存活对象的数据成正比
- 年轻代 (Young Gen)
增量收集算法
- 在垃圾回收过程中,应用软件处于一种stop the world的状态。在stop the world状态下,应用程序所有的线程都会挂起,暂停一切正常的工作,等待垃圾回收的完成。如果垃圾回收时间过长,应用程序挂起很久,将严重影响用户体验或者系统的稳定性。为零解决这个问题,即对实时垃圾收集算法的研究直接导致了增量收集算法的诞生
- 基本思想
- 如果一次性将所有的垃圾进行处理,需要造成系统长时间的停顿,那么酒可以让垃圾收集线程和应用程序线程交替执行,每次,垃圾收集线程只收集一小片区域的内存空间,接着切换到应用程序线程,依次反复,直到垃圾收集完成。
- 总的来说,增量收集算法的基础是传统的标记-清楚和复制算法。增量收集算法通过对线程间冲突的妥善处理,允许垃圾收集线程以分阶段的方式完成标记、清理或复制工作。
- 缺点
- 使用这种方式,由于在垃圾回收过程中,间断性地执行了应用程序代码,所以能减少系统的停顿时间,但是,因为线程切换和上下文转换的消耗,会使得垃圾回收的总体成本上升,造成系统吞吐量的下降