学了两天终于学会了一点儿关于数学方面的知识,特此总结纪念一下
数学知识总结
一、数论方面
(一)质数和约数
定义:大于1的自然数中,除了1和它本身以外不再有其他因数的自然数。
质数的判定
1.试除法判断质数
bool is_prime(int n){
if(n < 2) return false;
for(int i = 2;i<=n/i;i++)
if(n%i==0)
return false;
return true;
}
2.埃氏筛选0(nlognlogn)
算法思想:埃氏筛法的思想就是:先去掉2的倍数,再去掉3的倍数,再去掉4的倍数,……依此类推,直到最大数小于最后一个标出的素数的平方,那么剩下的序列中所有的数都是素数。
代码:
//埃氏筛选
void is_primes(int n){
judge[0] = 1,judge[1] = 1;
for(int i = 2;i<=n;i++){
if(judge[i]==0){
//如果i为质数,则进行筛选
cnt++;
for(int j = i+i;j<=n;j+=i)
judge[j] = 1;//如果是合数标记为1
}
}
}
3.线性筛选0(n)
线性筛思想的核心是:要保证的是每个合数只被这个合数最小的质因子筛除,而且只筛一次,没有重复筛除。
//线性筛
void is_primes(int n){
judge[0] = 1,judge[1] = 1;
for(int i = 2;i<=n;i++){
if(judge[i]==0)prime[++cnt] = i;
for(int j = 1;j<=cnt&&prime[j]<=n/i;j++){
judge[prime[j]*i] = 1;//如果是合数标记为1
if(i%prime[j] == 0)break;
}
}
}
筛选过程:
分解质因数
void divide(int n){
for(int i = 2;i<=n/i;i++){
if(n%i==0){
int t = 0;
while(n % i == 0){
n/=i;
t++;
}
//输出分解出的因数和个数
printf("%d %d\n",i,t);
}
}
//如果n大于1,则n为质数
if(n>1) printf("%d 1\n",n);
}
约数
首先介绍一下算数基本定理:
任何一个大于1的自然数 N,如果N不为质数,那么N可以唯一分解成有限个质数的乘积
即:N=P1a1 P2a2 P3a3…Pnan,这里P1 <P2<P3…<Pn均为质数,其中指数ai是正整数。
1.试除法求约数
void divisors(int n){
vector<int> v;
for(int i = 1;i<=n/i;i++){
if(n%i == 0){
v.push_back(i);
//如果 i*i != n则把n/i加入
if(i*i != n)
v.push_back(n/i);
}
}
//按照从小到大的顺序输出它的所有约数
sort(v.begin(),v.end());
for(int i = 0;i<v.size();i++)
printf("%d ",v[i]);
}
2.求约数的个数
N = (a1+1) * (a2+1) * (a3+1)…* (an+1)
证明:利用算数基本定理公式
3.求所有约数的和
N = (p10 + p11 +p12…+p1a1 ) * (p20 +p21 +p22 +…+p2a2 ) * … * (pn0 +pn1 +…+pnan )
证明:展开即证明
欧几里得算法(辗转相除法)
int gcd(int a,int b){
return b?gcd(b,a%b):a;
}
(二)欧拉函数
1~N中与互质的数的个数叫欧拉函数,记为φ(N)
φ(N) = N * (1 - 1/p1) * (1 - 1/p2) * (1 - 1/p3) * … * (1 - 1/pn)
证明:利用容斥原理
求欧拉函数O()
//求1-n中与n互质的数的个数
int get_eular(int n){
int ans = n;
for(int i = 2;i<=n/i;i++){
if(n%i == 0){
while(n%i==0)
n/=i;
ans = ans/i*(i-1);
}
}
if(n>1)
ans = ans/n*(n-1);
return ans;
}
线性筛欧拉函数O(n)
- 如果i为质数,则φ(i) = i -1
- 如果i%prime[j] ==0,则φ( i * prime[j] ) = φ(i) * prime[j]
- 如果i%prime[j] != 0,则φ( i * prime[j] ) = (prime[j] - 1) * φ(i)
证明:
代码:
void get_eulars(int n){
eular[1] = 1;
for(int i = 2;i<=n;i++){
if(judge[i] == 0){
prime[cnt++] = i;
//如果i为质数,则值为i的数的欧拉函数为:i-1
eular[i] = i-1;
}
for(int j = 0;j<cnt && prime[j]*i<=n;j++){
judge[prime[j]*i] = 1;//不是质数标记
if(i%prime[j] == 0){
eular[prime[j]*i] = eular[i]*prime[j];
break;
}
eular[prime[j]*i] = eular[i]*(prime[j]-1);
}
}
}
(三)欧拉定理与费马小定理
欧拉定理:若a与n互质,则:aφ(n)≡1(mod n)
证明:
证明之前先引入同余的概念:
定义:给定一个正整数m,如果两个整数a和b满足a-b能够被m整除,即(a-b)/m得到一个整数,那么就称整数a与b对模m同余,记作a≡b(mod m)。
即:两个整数a、b,若它们除以整数m所得的余数相等,则称a与b对于模m同余或a同余于b模m。
记作:a≡b (mod m)
设1-n中与n互质的数为集合A:a1,a2,a3…aφ(n)-1,aφ(n)
令mi = aai,并M集合为:m1,m2,m3…mφ(n)-1,mφ(n)
由于M中任意两个数都,不模n同余,且M中除以n的余数都与n互质。所以一定存在M中的数分别对应A中的每个数模n同余
所以得到:
m1 * m2 * m3…* mφ(n) ≡ a1 * a2 * a3 * … * aφ(n) (modn)
=> aφ(n) ∗ (a1 * a2 * a3 * … * aφ(n)) ≡ a1 * a2 * a3* … * aφ(n)(modn)
=>aφ(n)≡ 1 (modn) (证明完毕)
当n为质数时:φ(n) = n - 1;
得到费马小定理:an-1≡ 1 (modn)
(四)扩展欧几里得算法
首先引入裴蜀定理:
即如果a、b是整数,那么一定存在整数x、y使得ax+by=gcd(a,b)。
即:如果ax+by=m有解,那么m一定是gcd(a,b)的若干倍。(可以来判断一个这样的式子有没有解)
通过欧几里得算法求出gcd(a,b)来与m进行对比,可以判断x,y是否有解,然而当我们想要求出x,y是就必须用到扩展欧几里得算法。
证明:
字写有点很丑可以参考别人的证明:https://www.cnblogs.com/KatouKatou/p/9818175.html
代码实现:
int exgcd(int a,int b,int &x,int &y){
if(b == 0){
x = 1,y = 0;
return a;
}
int d = exgcd(b,a%b,x,y);
int tmp = x;
x = y;
y = tmp-a/b*y;
return d;
}
乘法逆元
定义:如果ax≡1 (mod p),且gcd(a,p)=1(a与p互质),则称a关于模p的乘法逆元为x。否则的话a不存在模p的乘法逆元。
如何求模p的乘法逆元呢?
方法一:
当模数p为质数,可以利用费马小定理 :
ap-1≡ 1 (mod p)
=> a * ap-2 ≡ 1 (mod p)
即:a在mod p 意义下的逆元为: ap-2
方法二:
a * x ≡ 1 (mod p)
等价于:
a * x = y1*p + 1 ,令y = -y1
=>a * x + y *p = 1
此时就可以用扩展欧几里得算法求解逆元了
(五)中国剩余定理(孙子定理)
中国剩余定理说明:假设整数m1,m2, … ,mn两两互质,则对任意的整数:a1,a2, … ,an,方程组 有解,并且通解可以用如下方式构造得到: