组合数有关的一些求和公式

C n m = C n − 1 m − 1 + C n − 1 m m C n m = n C n − 1 m − 1 C n 0 + C n 1 + C n 2 + … … + C n n = 2 n 1 C n 1 + 2 C n 2 + 3 C n 3 + … … + n C n n = n 2 n − 1 1 2 C n 1 + 2 2 C n 2 + 3 2 C n 3 + … . . + n 2 C n n = n ( n + 1 ) 2 n − 2 C n 1 1 − C n 2 2 + C n 3 3 + … … + ( − 1 ) n − 1 C n n n = 1 + 1 2 + 1 3 + … … + 1 n ( C n 0 ) 2 + ( C n 1 ) 2 + ( C n 2 ) 2 + … … + ( C n n ) 2 = C 2 n n \begin{array}{c} C_{n}^{m}=C_{n-1}^{m-1}+C_{n-1}^{m} \\ m C_{n}^{m}=n C_{n-1}^{m-1} \\ C_{n}^{0}+C_{n}^{1}+C_{n}^{2}+\ldots \ldots+C_{n}^{n}=2^{n} \\ 1 C_{n}^{1}+2 C_{n}^{2}+3 C_{n}^{3}+\ldots \ldots+n C_{n}^{n}=n 2^{n-1} \\ 1^{2} C_{n}^{1}+2^{2} C_{n}^{2}+3^{2} C_{n}^{3}+\ldots . .+n^{2} C_{n}^{n}=n(n+1) 2^{n-2} \\ \frac{C_{n}^{1}}{1}-\frac{C_{n}^{2}}{2}+\frac{C_{n}^{3}}{3}+\ldots \ldots+(-1)^{n-1} \frac{C_{n}^{n}}{n}=1+\frac{1}{2}+\frac{1}{3}+\ldots \ldots+\frac{1}{n} \\ \left(C_{n}^{0}\right)^{2}+\left(C_{n}^{1}\right)^{2}+\left(C_{n}^{2}\right)^{2}+\ldots \ldots+\left(C_{n}^{n}\right)^{2}=C_{2 n}^{n} \end{array} Cnm=Cn1m1+Cn1mmCnm=nCn1m1Cn0+Cn1+Cn2++Cnn=2n1Cn1+2Cn2+3Cn3++nCnn=n2n112Cn1+22Cn2+32Cn3+..+n2Cnn=n(n+1)2n21Cn12Cn2+3Cn3++(1)n1nCnn=1+21+31++n1(Cn0)2+(Cn1)2+(Cn2)2++(Cnn)2=C2nn

参考:https://blog.csdn.net/linruier2017/article/details/82945396

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值