卡尔曼滤波器——预测和观测的融合

卡尔曼滤波器是一种自回归滤波器,通过结合预测和观测来处理不确定性的系统状态。它假设系统状态服从高斯分布,并利用转移模型和观测模型更新状态估计。在预测步骤中,结合上一时刻状态和转移矩阵得到当前状态预测;在观测步骤中,考虑传感器数据和观测矩阵来修正预测。最后,通过融合预测和观测的高斯分布得到最佳状态估计。该方法广泛应用于动态系统状态估计,如导航、控制和信号处理等领域。
摘要由CSDN通过智能技术生成

卡尔曼滤波器:预测和观测的融合

整体理解

卡尔曼滤波器是一种高效的自回归滤波器。具有较强的鲁棒性。其鲁棒性来源于对不确定度的有效建模。对于卡尔曼滤波器,假定系统的真实状态为X,由于现实中存在种种不确定性,我们无法确定真实状态的数值,只能给出他的分布,即真实状态在状态空间的各个位置出现的概率。

基于前一个状态和转移模型,我们可以给出对当前状态的预测
基于传感器等对当前状态的量测,我们可以给出对当前状态的观测

预测和观测都是高斯分布,卡尔曼滤波器将这两个高斯函数“相乘”,得到当前状态。

Presumption1 假定系统状态X服从高斯分布,那么系统可以由均值和方差唯一确定。

高斯函数相乘
图中,均值为 μ 0 \mu_0 μ0的高斯函数和均值为 μ 1 \mu_1 μ1的高斯函数相乘,得到均值和方差分别为 ( μ ′ , σ ′ ) (\mu',\sigma') (μ,σ)的高斯函数大致如图。
上图为一维高斯,当变量为多维时,均值变为均值向量;高斯分布的各个维度可能相互影响,方差变为协方差矩阵 Σ i j \Sigma_{ij} Σij.

系统状态

系统当前的状态为 x k x_k xk(严格来说,是状态的均值为 x k x_k xk,或者,最有可能的状态为 x k x_k xk),方差为 P k P_k Pk.
举个例子,当系统处于匀速运动时,系统的状态可以由 {位置; 速度} 两个量描述。
匀速运动状态

STEP1 预测

Presumption2 假定系统的转移模式T是确定的,已知系统的当前状态,则系统下一时刻的状态可以唯一确定。

F k F_k Fk为系统的运动转移方程。

已知前一时刻状态的分布和转移矩阵,要求解当前时刻的状态。
在这里插入图片描述
上面的推导比较理想,现在加上人为制动和环境扰动的考虑,当前时刻的状态更改如下,得到最终的预测状态
在这里插入图片描述
系统的探测器如传感器等传递的观测数据 z k z_k zk可能是目标离探测器的距离等,和系统的状态如位置、速度等并不直接等价,往往需要转换矩阵 H k H_k Hk。将对系统的预测状态,转化为对系统的预测观测。
Z 预测 = H k ⋅ X k Z_{预测} = H_k\cdot X_k Z预测=HkXk

STEP2 观测

探测器往往也带有误差。基于探测器提供的数据,得到的观测状态为
传感器噪声产生的协方差矩阵 R k R_k Rk
传感器分布均值 Z k Z_k Zk

融合预测和观测

预测和观测步分别得到了一个高斯分布,将这两个高斯分布相乘,即得到了系统的当前状态。
在这里插入图片描述

参考文献

【1】https://zhuanlan.zhihu.com/p/39912633

  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值