- 博客(85)
- 资源 (1)
- 收藏
- 关注
原创 机器学习 (K - mean算法)
机器学习 K-Mean算法根据样本间的某种距离或者相似性来定义聚类,即把相似的(或距离近的)样本聚为同一类,而把不相似的(或距离远的)样本归在其他类。其基本思想是:通过迭代寻找k个聚类的一种划分方案,使得用这k个聚类的均值来代表相应各类样本时所得的总体误差最小。参数说明:μc(i)表示第i个聚类的均值(质心),x(i)为样本数据。c(i):确定所属类别,与最近的质心归为一类;算法步骤:1)随机选取K个质心点(作为分类依据)2)迭代下述过程1)对于每一个样例 i,..
2020-05-29 20:04:49 827
原创 面向对象技术
面向对象方法(OO):是一种实用的系统化软件开发方法。以客观世界中的对象为中心,其分析和设计思想符合人们的思维方式,分析与设计的结果与客观世界也比较接近,易于被人接收。一、面向对象基础1.1面向对象的基本概念:面向对象 = 对象(object) + 类(class) + 继承(inheritance)+ 消息传递(communication with massages);对象...
2020-04-04 09:19:20 602
原创 机器学习(numpy库)
导入numpy库:import numpy as np创建numpy对象:通过numpy.array来实现numpy.array(object, dtype = None, copy = True, order = None, subok = False, ndmin = 0)参数说明 object 数组或者是嵌套的数组 dtype 元素的数据类型(可选) co...
2020-04-01 11:19:54 389
原创 机器学习(神经网络)
一、感知机感知机是基本的处理元素。它具有输入(其输入可以来自外部输入,也可以来自其他感知机)。与每个输入xi 相关联的是一个链接权重(突触权重)wi,而输出y在最简单的情况下是这些输入的加权和(也可以是其他类型)...
2020-03-15 23:22:41 563
原创 机器学习(贝叶斯决策定理)
概率刻度:为0-1之间的一个实数,表示一次随机事件中事件发生可能性的大小。(概率≥0,非负)可观测变量:在实验过程中可以观察到的变量;(如投一枚硬币出现正面、反面的情况)在通常情况下,我们是不知道一个未知事件的确切概率的,但在大量实验的基础上我们可以用观测变量的概率分布来间接地表达事件总体的概率分布。如:投一枚硬币1为正面0为反面,9次实验结果为{1,1,1,0,1,0,0,1,1...
2020-03-14 20:50:02 678
原创 数据结构(线性表&树&图)
一、线性结构1.1线性表定义:线性表是n个元素的有限序列,通常表示为{a1,a2,...,an},对于非空线性表有如下几个特点:1)存在唯一的一个被称为"第一个"(“最后一个”)的元素; 2)除第一个元素序列中的每一个元素都有唯一前驱;3)除最后一个元素序列中的每一个元素都有唯一后继;线性表的存储结构(顺序存储和链式存储)顺序存储特点:逻辑上相邻的元素物理上也相连;已...
2020-03-06 16:12:44 3345
原创 数据库基础
一、基本概念1.1数据库与数据库管理系统数据:描述事物的符号记录(声音、文字、图像、视频等)。数据库系统(DBS):数据库(DB)、硬件、软件、相关人员构成;1)数据库:存储在计算机内有组织可共享的大量数据集合(数据关联密切、共享性高、冗余度低、易扩充);2)硬件:构成计算机系统的各种物理设备,包括存储数据所需要的外部设备;3)软件:包括操作系统、数据库管理系统(DBMS)...
2020-03-01 13:17:00 1953
原创 机器学习(杂项)
一、特征缩放在训练模型的过程中,我们所选取的特征可能会出现数据过大(跨度过大)的情况。过大的数据(区间)可能会导致在梯度下降过程中收敛过慢,这时就需要对特征数据进行适当的缩放操作。缩放方法(收敛到【0,1】【-1,1】& 其他)1)将数据值转化为【0,1】之间:2)将数据值转化为【-1,1】之间:3)均值标准化:u为样本数据的均值,s为样本数据的方差...
2020-02-27 16:32:18 245
原创 机器学习(KNN算法&分类问题&手写数字识别)
KNN(K-Nearest Neighbor)最邻近规则分类算法思想:计算待分类样本点到K个离其最近已知类别样本点的距离,其类别属于这K个样本中占主导的部分(少数服从多数),故此算法的核心就是计算待测点与K个已知样本点的距离。这里的距离可以是指欧式距离,也可以使用其他的距离衡量,比如余弦距离、相关度、曼哈顿距离等;在这里K的选取为奇数(不会产生歧义)一定会分别出类别。(K的选取...
2020-02-26 14:20:22 676
原创 机器学习(感知机)
人工神经网络模拟生物神经系统对真实世界物体所作出的交互反应,下图为生物神经元的结构图;在生物神经网络中每个神经元与其他的神经元连接,树突接收传递过来的信号,细胞核处理电信号并传递到轴突,如果信号超过一定的阀值则产生兴奋,将信号通过轴突末梢传递到其他神经元。定义阀值函数S(a)={1 a>0; 0 a<=0}这里的a为传递过来的信号总和;...
2020-02-25 12:44:58 375
原创 机器学习(决策树)
决策树的构成:一个根结点和若干个内部结点以及叶子结点构成,每一个叶子结点对应着一个分类类别,其他结点对应的一次决策(如下图黄色结点为分类的最后结果,绿色结点为决策结点);适用范围:比较适合分析离散的数据(若是连续的数据可将其离散化进行处理),如下图就是一颗决策树;信息熵:某条信息的信息量的大小与它的不确定性有直接关系,为了弄明白一个(不确定)事情,需要有大量的数据熵就是来度量事...
2020-02-08 19:25:31 375
原创 机器学习(多元线性回归模型&逻辑回归)
多元线性回归定义:回归分析中,含有两个或者两个以上自变量,称为多元回归,若自变量系数为1,则此回归为多元线性回归。(特殊的:自变量个数为1个,为一元线性回归)多元线性回归模型如下所示:如上图所示,一元线性回归图形为一条直线。而二元线性回归,拟合的为一个平面。多元线性回归拟合出的图像为以超平面;逻辑回归(分类问题的处理)求解步骤:1)确定回归函数 (通常用Sigm...
2020-02-06 16:37:05 7759
原创 机器学习(一元线性回归模型)
模型:一元线性回归模型回归分析:建立方程模拟两个或者多个变量之间是如何相互关联,被预测的变量称为因变量(结果),用来进行预测的变量称为自变量(输入参数),当输入参数只有一个(输出1个)时,称为一元回归,反之当输入有多个(输出1个),称为多元回归;一元线性回归模型如下所示:(我们只需确定此方程的两个参数即可)第一个参数为截距,第二个参数为斜率(我们只需根据大量的数据集通过训练求解...
2020-01-22 20:50:54 5993
原创 Pygame学习(二)基本知识 & 2048游戏实战
1、声明和导入:在程序的顶部,会存在一些注释用于说明这游戏是什么,谁开发的它,用户可以从中获取必要的版本信息。2、幻数:在开发过程中尽量使用常量变量,尽可能的避免在程序中出现数值信息。方便在后期进行修改时减少对程序的修改量。所谓的幻数就是在程序中出现的非常量变量的数据,我们在开发过程中要尽量避免这种情况的出现。3、assert语句进行检查:assert语句包括三个部分即assert关键...
2019-12-24 10:06:49 391
原创 Pygame学习(一)初识
一、python的GLI和GUI界面python的内建函数编写python程序时只能通过input和print来处理文本。程序可以在屏幕上显示文本,这一类程序称之为命令行界面(CLI)。这种程序存在很大的局限性,它们不能显示图形而且没有颜色,也不能够使用鼠标,所能接受的输入input只能通过键盘输入(必须按下回车),这就意味着对于用户的每一次操作都不是实时的,因此这种程序不能够满足...
2019-12-20 10:20:45 460
原创 算法分析与设计(优化问题&近似&不可近似算法&杂项)
一、优化问题(Optimization Problem)一个优化问题要么是最小化问题要么是最大化问题,其主要由以下三个部分组成:1)一个问题实例集; 2)求出所有实例的所有解作为候选解; 3)对候选解进行检测的方法;在候选解中最小(最大)的称为最小解(最大解)二、近似算法(Approximation algorithm)绝对近似算法(absolute algorithm):如果...
2019-12-16 17:07:36 1375
原创 算法分析与设计(证明NPC问题的方法)
一、限制&约束(restrict)1)说明对于问题A有一个已知的NPC问题B作为其特殊实例;2)对于问题A增加某些限制使其为NPC问题;(前者是证明有一个特殊的NPC实例,后者是追加限制使得其为NPC问题)注:此方法是证明NPC问题最简单、最常用的方法;二、局部替换(local replacement)1)选取一个已知的正确的NPC问题,作为证明另一个问题的基础单元...
2019-12-16 13:37:13 3095
原创 算法分析与设计(VC问题&团问题&独立集问题)
一、VC问题&其NPC证明定义:对于给定的一个图G和一个正整数k是否存在小于等于k个顶点,使得这些点所关联的边能够覆盖整个图G;在这里我们由已知的3SAT规约到VC问题(在之前已经证明3SAT是NPC问题)这里的任意Ci满足|Ci|=3这个条件,下面我们根据3SAT的条件找出一个变换使得其为VC问题;在这里举一个例子便于理解(给出如下3SAT实例,将其转化为顶点覆盖...
2019-12-16 10:22:20 1805
原创 算法分析与设计(NPC问题)
一、问题难证明(难解)的原因1)问题是难解,只能在指数时间内找到问题的解决方案;(问题是复杂)2)问题的解法长度超过了对应输入的任意一个多项式方法;(问题规模大,语句频度)二、决策问题(decision problem)定义:结果只回答“是”或‘否’的问题称为决策性问题;组成部分:1)问题名称; 2)问题实例; 3)基于问题实例提出是(否)问题;三、P问题&NP问题...
2019-12-15 20:52:02 2362
原创 矩阵分析学习(补充)
在系统分析中,会涉及到多项式矩阵互质性的判别问题,此类问题通常归结为两种1)具有相同行数的多项式左互质; 2)具有相同列数的多项式右互质;一、多项式矩阵的右公因子(左公因子)的定义:二、多项式矩阵的最大右公因子(最大左公因子)的定义:首先这个公因子要满足(定义1)所描述的,其次若满足以下条件则说明此多项式矩阵R(λ)为最大右(左)公平因子;三、gcrd构造定理:(用于求...
2019-12-11 15:30:37 7409
原创 Canvas画布学习
一、创建Canvas&绘制图像<canvas id="mycanvas"></canvas>//html中创建一个canvasvar canvas=document.getElementVyId("mycanvas");var ctx=canvas.getContext("2D");//获取canvas对象,获取2d的绘制环境1)绘制一条直线:li...
2019-12-06 14:46:48 293
原创 JQuery学习(二)
一、jQuery DOM 操作1)获得内容 :text()、html() 以及 val();text() 设置或返回所选元素的文本内容;(不返回html标记信息) html() 设置或返回所选元素的内容(包括 HTML 标记); val() 设置或返回表单字段的值;(一般用于返回表单信息进行表单验证等操作)2)获取属性 :attr();//常用方法,用于获取属性值...
2019-12-02 16:43:34 171
原创 JQuery学习(一)
一、初识JQueryjquery是一个JavaScript库,极大的简化了对于JavaScript的编程而且易于学习。它可以实现如下功能:1)html元素的选取; 2)html元素的操作; 3)css的操作; 4)html事件函数; 5)JavaScript特效和动画;6)html、dom的遍历和修改; 7)ajax; 8)utilities; 除此之外jquery还提供了大量的插件供...
2019-12-02 15:34:32 207
原创 矩阵分析学习(最小范数解与极小最小二乘解)
广义逆矩阵与线性方程组的解:设有线性方程组 Ax=b,在这里A是m*n的矩阵,b为m*1的矩阵;如果m=n且A可逆,则Ax=b有唯一解x=(A^-1)b或者m != n 或 m = n但A不可逆,方程组不一定有解,即便是有解,解的个数也不一定唯一。定理:n*m矩阵G是m*n矩阵A的一个{1}-广义逆,当且仅当AGA=A;(注:这里的X、Y、Z为任意矩阵,一般取O矩阵即可,Q和P...
2019-12-02 13:35:35 19901 2
原创 微信小程序学习(实战)
这几天浏览了很多小程序,感觉星巴克的小程序布局既简单又大方,结合之前所学的小程序知识来对其进行简单的模拟;(注:仅仅限于学习,并不进行商业用途,哈哈^_^ 望周知!!!)知识储备:1)微信小程序组件【在这里主要使用了view / swiper / scroll-view / button / radio-group / image等组件】2)微信小程序的页面渲染方式【使用this....
2019-11-30 11:58:38 670 2
原创 微信小程序学习(七)常用API(2)
一、地图:MapContext wx.createMapContext(string mapId, Object this)MapContext 常用方法如下表所示:(常用的一般就是获取移动设备的位置信息以及或者当前地图的中心坐标位置) getCenterLocation(Object object) 获取当前地图中心的经纬度,在success回调函数的res...
2019-11-24 17:31:43 627
原创 微信小程序学习(六)常用API
通过这几天的学习,已经初步能够了解小程序的目录结构、程序配置、界面设置,以及对其api的简单使用;现在我们在继续学习几种在小程序中常用的api:一、获取系统信息:1)wx.getSystemInfo(Object object):其参数为回调函数,常用的有三种success(成功)、fail(失败)、complete(完成);对于success函数,其有一个默认参数res,可以获取...
2019-11-21 15:05:36 1012
原创 算法分析与设计(后缀树)
一、后缀树的定义:通过一个树可以表示所有可能的后缀子串;例子:S=acacag;1)每一条边用一个字符串标记;2)所有的后缀可以从根结点到所有叶结点的路径读出;3)结束标记符“$”(避免某些后缀是其他后缀的前驱);后缀树的特点:1)长度为n的字符串,其后缀树恰好有n个叶子结点(因为有n个后缀);2)每一条边可以用个数据表示(在原来字符串的起始位置和结束位置);3)在一个...
2019-11-20 11:12:40 868
原创 微信小程序学习(五)
一、Animation wx.createAnimation(Object object)作用:创建一个动画实例animation。调用实例的方法来描述动画。最后通过动画实例的 export 方法导出动画数据传递给组件的 animation 属性。(之后组件就会按照你约定的运动模式来进行)此方法最后返回一个Animation类型的对象;属性 类型 默认值 必填 说...
2019-11-11 16:21:45 624
原创 微信小程序学习(四)
一、小程序的配置:全局配置:即在app.json进行配置的信息:(下表仅仅列出常用的几种)属性 类型 必填 描述 pages string[] 是 页面路径列表,存放所有页面路径 window Object 否 全局的默认窗口表现,设置窗口样式 tabBar Object 否 底部tab栏的表现,底部导...
2019-11-06 16:04:28 566
原创 微信小程序学习(三)
一、小程序的运行环境小程序一般运行在以下三种环境:IOS、Android、以及小程序开发平台上面(一般用于调试与测试);小程序在启动后,页面被展示给用户,此时的小程序处于前台状态。当用户点击手机右上角的关闭按钮时或者Home键离开微信时,小程序并未完全终止运行,而是进入了后台状态在运行一段时间。当用户在一次进入微信小程序时,它又会从后台进入前台。但是有两种情况会使得小程序销毁:...
2019-11-05 22:05:03 713
原创 微信小程序学习(二)
一、事件响应与数据传输事件的定义:1、事件是视图层到逻辑层的通讯方式;2、事件可以将用户的行为反馈到逻辑层进行处理;3、事件可以绑定在组件上,当达到触发事件,就会执行逻辑层中对应的事件处理函数;4、事件对象可以携带额外信息,如 id, dataset, touches;(简单的说事件就是绑定在控件上的函数,控件上也可以绑定上对应的数据集合通常命名方式为data-XX,这里的XX为用...
2019-11-04 21:21:09 423
原创 微信小程序学习(一)
一、小程序的代码构成JSON配置:json是一种数据格式,并不是编程语言,在微信小程序中起到静态配置的作用。app.json在微信小程序中起到全局配置的作用,包括了小程序内的所有页面路径、网页表现、网络超时时间、底部Tab等。{ "pages":[ "pages/index/index", "pages/logs/logs" //用于存放页面路径信息,默认第...
2019-11-04 15:50:18 320
原创 后缀树的实现(时间复杂度O(m^3))
构建的基本思路:首先往树中插入最长的后缀即字符串本身,然后依次插入次长的后缀,重复此步骤直到插入最后一个空串;1)插入串本身;//初始化操作2)若上一个后缀为S,令S=aW(W为下一个后缀)。往树中插入后缀W,重复本操作直到S=$;按照定义取做的话,算法的时间复杂度为O(m^3)在这里我们只需要记录边集合即可,对于每条边保存该边的起始和结束位置,以及此边保存的字符串信息(起始&am...
2019-10-30 20:38:48 562
原创 后缀树(一)定义及构造
后缀树(Suffix tree)::一个具有m个词的字符串S的后缀树T,就是一个包含一个根节点的有向树,该树恰好带有m个叶子,这些叶子被赋予从1到m的标号。每一个内部节点,除了根节点以外,都至少有两个子节点,而且每条边都用$的一个非空子串来标识。出自同一节点的任意两条边的标识不会以相同的词开始。后缀树的关键特征是:对于任何叶子i,从根节点到该叶子所经历的边的所有标识串联起来后恰好拼出S的从i...
2019-10-26 10:36:22 2196
原创 机器学习(一)基本概念
一、基本概念:数据集(data set)是记录数据的集合,每条记录是关于一个或对象的描述,称之为一个示例(instance),反应事件或者对象的某一方面的特性称之为属性(attribute)或者特征(feature),其值称之为属性值(attribute value),由不同属性张成的空间称之为属性空间(attribute space),在属性空间上的每一个点对应一个坐标向量,称之为特...
2019-10-18 10:26:05 270
原创 机器学习(二)线性模型
线性模型(一元回归线性模型,多元线性回归模型)由d个属性描述的示例Xi={x1,x2,.....,xd},其中Xi为X中的第i个个示例,xd表示示例Xi在第d个属性的取值;线性模型即通过线性函数来进行预测的函数,即 f(X)=w1x1+w2x2+.....+wdxd +b,写成向量形式 f(X)=w^T X+b;(注L这里的w与b通过数据集合学习求解得出)简单的,对于f(x)=wx...
2019-10-17 13:00:43 978
原创 矩阵分析学习(广义逆补充)
广义逆矩阵与线性方程组的解定义1:A为m*n矩阵,一个n*m矩阵G称为A的一个{1}-广义逆,如果对任意给出的m*1矩阵B,只要AX=B有解,则X=GB一定也是AX=B的解;定义2:A为m*n矩阵,G为n*m矩阵为A的一个广义逆,当且仅当AGA=A;证明:已知一个G为广义逆,则对于非齐次线性方程AX=B,有AGB=B成立。由此可得出AGAX=AX,所以得出AGA=A;已知AGA...
2019-10-15 17:28:15 1369
原创 矩阵分析学习(补充)
一、k级行列式因子在A(λ)特征矩阵中所有非0的k级子式首项系数为1的最大公因式Dk(λ)称为A(λ)的一个k级行列式因子;举个例子:在这里我们设A(λ)为对于1问:1级非0子式为(λ+1,λ-1,λ-2),这三个多项式的最大公因式为1,所以D1(λ)=1;2级非0子式为((λ+1)(λ-1),(λ+1)(λ-2),(λ-1)(λ-2)),这三个多项式的最大公因式为1,所以D2...
2019-10-14 14:09:57 3905
原创 软件工程学习(四)
知识要点:1)实现:编码风格;2)测试的定义和目标;3)单元测试;4)集成测试过程及方法;5)白盒、黑盒测试技术;6) BRO测试;条件测试,测试用例设计。7)维护:软件维护的定义、特点; 8)主要的维护活动;软件再工程过程。9)软件项目管理:估算软件规模;10)开发工作量估算;11)开发时间、进度估算;12)关键路径、机动时间;13)软件配置及管理过程;能力成熟度模型。实...
2019-10-08 11:02:12 2655
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人