一、数域&线性空间的概念:
数域:在非空集合P中含有非零元素,且其中任意两个元素的和、差、积、商(除数不为0元)仍属于该集合P,则称此集合为一个数域。(说的简单点就是一个集合set里面元素是数据,且这些数据的四则运算后得到的数据仍在此集合内,则称此集合为数域)
例子:实数集合R,复数集合C都是数域,但自然数集合N不是数域。对于数域默认0和1在其中。
线性空间:V是非空集合、P是一个数域,如果:
1)在V中定义一个二元运算(加法运算),使得在V中存在两个元素x&y在进行x+y之后仍是集合V中唯一确定的元素。
2)在数域P和V之间定义一种运算(数量乘法)即:P中的任意一个数a与V中的任意一个元素x做数乘运算(ax)使得此运算之后仍是集合V中唯一确定的一个元素,则称a与x的数量积,记做ax;
线性空间所满足的8条规则:(前四条针对加法运算,后四条针对数乘运算)
1、对于任意x,y属于V,有x+y=y+x;(交换律) |
2、对于任意x,y,z属于V,有x+(y+z)=(x+y)+z;(结合律) |
3、存在零元,记做0。对于任意x属于V,有x+0=x;(有零元) |
4、有负元,对于任一x属于V。存在y属于V,使得x+y=0,则y是x的负元(有负元) |
5、对于任一x属于V,有1x=x; |
6、(ab)x=a(bx),a&b为数,x为集合V中一个元素 |
7、(a+b)x=ax+bx,a&b为数,x为集合V中一个元素(分配律) |
8、a(x+y)=ax+by,a为数,x为y集合V中一个元素(分配律) |
如果上述两种运算满足此8条规则,则称集合V为数域P上的线性空间(向量空间),V中的元素称为向量,V中的零元称之为零向量。当P为实数域时,V称为实线性空间;当P为复数域时,V称为复线性空间;
性质:线性空间中的零元是唯一的,其中每个元素的负元也是唯一的。
线性相关与线性无关:V是数域P上的线性空间,x,y,.....v是V上的一组向量,如果P中存在一组不全为0的数a,b...s使得以下等式
ax+by+......+sv=0成立,则称x,y,....z线性相关,反之如果a,b,...s都为0使得上式成立则x,y,...z线性无关。(所谓的线性相关与无关就是在x,y,...z中是否可以通过其他向量相互表出)
性质:原向量组线性无关,则部分组线性无关;部分组线性相关,则原向量组线性相关。
V是数域P上的线性空间,若V有n个线性无关的向量且无更多个数的线性无关向量,则称V为数域P上的n维线性空间。
在n维线性空间中,任意n个线性无关的向量都称为它的一组基,在有限维线性空间中,基是存在的但并不唯一。
定理:V是数域P上的n维线性空间,e1,e2,...en为V的一组基,则V中的任意一个向量都可用此基来构成,且表示唯一。
二、基变换与坐标变换:(这里考虑n维行向量)
A={a1,a2......an}、B={b1,b2...bn};作为基向量
已知不同的基向量之间可以相互表示,则存在一个向量组x,使得x=c1a1+c2a2+.....+cnan成立,且对于B也成立;
则Aa=x,a={c1,c2,...cn}^T(列向量),同理有Bb=x成立。因为两个x相同则可有等式Aa=Bb(等式一);
对于不同的基之间在该线性组合条件下也可以相互表示有AC=B(等式二),C为A到B的过渡矩阵。
联立等式一与等式二可得下列结论:
已知A和B为集合V上的两组基,对于任意x属于V存在以下式子成立,即:x=Aa,x=Bb(x可由基A,B唯一表示)
Aa=Bb可知a=A^-1Bb,而对于A,B两组基有B=AC成立,两组基可以相互表示。有C=A^-1B(C为过渡矩阵)
由此可知a=Cb或者b=C^-1a;(不同基下的坐标变换公式)
极大线性无关组(基)可能不唯一,但每一组基的维数相同。在标准基下,对应的向量坐标唯一。
三、子空间维数定理:
定义:设V是数域P上的线性空间,W是V 的一个非空子集。如果W对于线性空间V所定义的加法和数乘运算也构成数域P上的线性空间,则称W为V的线性子空间,简称为子空间。
定理:设W为P上线性空间V的非空子集,则W是V的线性子空间的充要条件为:
1)x,y属于W,则x+y也属于W;
2)x属于W,a属于P,则ax也属于W;(即W关于V中定义加法和数乘运算封闭)
特殊的:由单个零向量组成的也为V的一个子空间,称为零子空间,其维数定义为0。V本身也是自身的一个子空间,这两个子空间称为平凡子空间。
定理2:V1,V2是数域P上的线性空间V的两个子空间,则它们的交集也必定为V的一个子空间。
(定理2证明)对于V1交V2构成的子空间W交集一定有零子空间,所以W非空。任取x,y属于W则由交集关系可知x和y也一定属于子空间V1和V2。x+y也同时属于V1和V2即W,得证对于加法运算封闭。任意a属于P 同理可得ax(或ay)也同时属于V1(V2)即数乘运算也对于W封闭。故得证定理成立。
定理3:V1,V2是数域P上的线性空间V的两个子空间,则它们的和也必定为V的一个子空间。(此定义可以推广至多个子空间)
(定理3证明)对于两个非空的V1和V2子空间其和必定非空。设x1和x2为V1的两个元素则必定满足条件x1+x2属于V1,同理可得y1+y2属于V2,联立两式x1+x2+y1+y2。整理的(x1+y1)+(x2+y2)属于V1+V2;对于数乘ax1属于V1,ay1属于V2,则a(x1+y1)满足属于V1+V2,可得定理成立。
直和的定义:V1和V2为V的两个子空间,如果这两个子空间构成的和W具有性质:对于任意u属于W,其分解式u=x+y(x,y分别属于V1和V2)是唯一的,则称W为直和。(u由V1和V2中两个元素唯一构成)
定理4(维数公式):V是数域P上的n维线性空间,V1,V2是其两个子空间,则有维数公式,
dimV1+dimV2=dim(V1+V2)+dim(V1交V2);
(证明定理4)dimV1=a,dimV2=b,dim(V1+V2)=c,dim(V1交V2)=d;
由集合的观点,(V1+V2)理解为两个子空间的并集,V1与V2并集=V1+V2-V1交V2即c=a+b-d,故得证上式成立。
关于定理4的推论:对于n维线性空间V的两个子空间维数之和大于n,则其交集必定含有非零向量。
证明:a+b>n,c<=n由定理4的c+d=a+b得出d=a+b-c>0得证其交集必定含有非0向量。
特殊的情况:如果V1与V2交集只包含空集则V1+V2是直和,且V1交V2={空集合}为V1+V2直和的充要条件。
推论:对于0向量的分解式唯一,则V1+V2构成直和。
当V1+V2满足直和条件时,有dimV1+dimV2=dim(V1+V2);//特殊情况且此关系可推广至多个。