题目描述
HZ偶尔会拿些专业问题来忽悠那些非计算机专业的同学。今天测试组开完会后,他又发话了:在古老的一维模式识别中,常常需要计算连续子向量的最大和,当向量全为正数的时候,问题很好解决。但是,如果向量中包含负数,是否应该包含某个负数,并期望旁边的正数会弥补它呢?例如:{6,-3,-2,7,-15,1,2,2},连续子向量的最大和为8(从第0个开始,到第3个为止)。给一个数组,返回它的最大连续子序列的和,你会不会被他忽悠住?(子向量的长度至少是1)
public class Solution {
public int FindGreatestSumOfSubArray(int[] array) {
int len=array.length;
int[] dp=new int[len];
dp[0]=array[0];
int max=array[0];
for(int i=1;i<array.length;i++){
dp[i]=array[i]+(dp[i-1]>0?dp[i-1]:0);
max=Math.max(max,dp[i]);
}
return max;
}
}
时间复杂度为O(n),空间复杂度为O(n);
public class Solution {
public int FindGreatestSumOfSubArray(int[] array) {
int curMax=0;
int greatestMax=-Integer.MAX_VALUE;
for(int i=0;i<array.length;i++){
if(curMax<=0){
curMax=array[i];
}else{
curMax+=array[i];
}
if(greatestMax<curMax){
greatestMax=curMax;
}
}
return greatestMax;
}
}
时间复杂度为O(n),空间复杂度为O(1);