HMM(隐马尔科夫模型)

问题1:
给定模型 λ = ( A , B , π ) \lambda=(A, B, \pi) λ=(A,B,π), 给定观测序列 O = ( o 1 , o 2 , . . . , o T ) O=(o_{1},o_{2}, ..., o_{T}) O=(o1,o2,...,oT)下, 计算该序列出现的概率 P ( O ∣ λ ) P(O|\lambda ) P(Oλ)
问题2:
给定模型 λ = ( A , B , π ) \lambda=(A, B, \pi) λ=(A,B,π), 给定观测序列 O = ( o 1 , o 2 , . . . , o T ) O=(o_{1},o_{2}, ..., o_{T}) O=(o1,o2,...,oT)下, 求最有可能的隐藏状态序列 I ∗ = ( i 1 , i 2 , . . . , i T ) I^*=(i_{1}, i_{2}, ..., i_{T}) I=(i1,i2,...,iT) , I ∗ = a r g m a x I P ( I ∣ O , λ ) I^*=argmax_{I} P(I|O,\lambda) I=argmaxIP(IO,λ)
问题3:
给定观测序列 O = ( o 1 , o 2 , . . . , o T ) O=(o_{1},o_{2}, ..., o_{T}) O=(o1,o2,...,oT), 估计模型的参数 λ ∗ \lambda^* λ,使得该模型下, 观测序列出现的概率最大 λ ∗ = a r g m a x λ P ( O ∣ λ ) \lambda^*=argmax_{\lambda}P(O|\lambda) λ=argmaxλP(Oλ)

求解问题1
前向算法
前向概率(观测序列为 ( o 1 , o 2 , o 3 , . . . , o t ) (o_{1}, o_{2}, o_{3}, ..., o_{t}) (o1,o2,o3,...,ot), 且在 t t t时刻处于隐藏状态 n n n的概率)

α t ( i ) = P ( o 1 , o 2 , . . . o t , i t = i ∣ λ ) \alpha _{t}(i)=P(o_{1},o_{2}, ...o_{t}, i_{t}=i|\lambda) αt(i)=P(o1,o2,...ot,it=iλ)
α t + 1 ( i ) = P ( o 1 , o 2 , . . . , o t + 1 , i t + 1 = i ∣ λ ) = ∑ j = 1 N α t ( j ) a j i b i ( o t + 1 ) \alpha_{t+1}(i)=P(o_{1}, o_{2}, ..., o_{t+1}, i_{t+1}=i|\lambda)=\sum_{j=1}^N\alpha_{t}(j)a_{ji}b_{i}(o_{t+1}) αt+1(i)=P(o1,o2,...,ot+1,it+1=iλ)=j=1Nαt(j)ajibi(ot+1)
P ( O ∣ λ ) = ∑ i = 1 N α T ( i ) P(O|\lambda)=\sum_{i=1}^N\alpha_{T}(i) P(Oλ)=i=1NαT(i)

后向算法
后向概率(在 t t t时刻隐状态为 i i i的条件下, 观测序列为 ( o t + 1 , o t + 2 , . . . , o T ) (o_{t+1}, o_{t+2}, ..., o_{T}) (ot+1,ot+2,...,oT)的概率)

β t ( i ) = P ( o t + 1 , o t + 2 , . . . , o T ∣ i t = i , λ ) \beta_{t}(i)=P(o_{t+1}, o_{t+2}, ..., o_{T}|i_{t}=i, \lambda) βt(i)=P(ot+1,o

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值