自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(3)
  • 收藏
  • 关注

原创 2020-08-22

描述与算法 1.决策树是一种常见的机器学习方法,其是基于树结构来决策的,一般地,一颗决策树包含一个根结点,若干个内部结点和若干个叶结点。 2.结点来自于属性,在每一步进行决策时,选取最优划分属性,根据属性的类别,特征的不同,来划分样本集,然后在分支里,依据剩余的属性集,选取最优属性来继续决策,直至需要划分的数据集分支全属于同一个特征或者属性集为空或者数据样本同属于一个类别。 在这里插入图片描述 划分依据(如何选取最优划分属性) 1.ID3算法:依据信息增益 信息量(不确定性): 1.信息量是度量一个数据或者

2020-08-22 20:55:48 350

原创 ML_Task01逻辑回归

基于逻辑回归的分类预测 1、简介 Logistic 回归即对数概率回归,它虽然被称为回归,但其实际上是分类模型,并常用于二分类。它用sigmoid函数估计出样本属于正样本的概率。 关于logistic有两种表述。 第一种表述:概率值为0-1,如果有函数,对于一个样本的特征向量,这个函数可以输出样本属于每一类的概率值,那么这个函数就可以用来作为分类函数,h(z)=1/(1+e^(-z) )。这个函数的定义域为整个实数域,值域为(0,1),且是一个单调的增函数。根据对分布函数的要求,这个函数可以用来作为随机变量

2020-08-20 20:30:57 200

原创 Leetcode_Task01分治

分治原理 思想 分治算法的主要思想是将原问题递归地分成若干个子问题,直到子问题满足边界条件,停止递归。将子问题逐个击破(一般是同种方法),将已经解决的子问题合并,最后,算法会层层合并得到原问题的答案。 步骤 分治算法的步骤 分:递归地将问题分解为各个的子问题(性质相同的、相互独立的子问题); 治:将这些规模更小的子问题逐个击破; 合:将已解决的子问题逐层合并,最终得出原问题的解; 应用 Leetcode 169. 多数元素 问题描述 给定一个大小为 n 的数组,找到其中的众数。众数是指在数组中出现次数大于

2020-08-19 17:17:33 157

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除