分治原理
思想
分治算法的主要思想是将原问题递归地分成若干个子问题,直到子问题满足边界条件,停止递归。将子问题逐个击破(一般是同种方法),将已经解决的子问题合并,最后,算法会层层合并得到原问题的答案。
步骤
分治算法的步骤
分:递归地将问题分解为各个的子问题(性质相同的、相互独立的子问题);
治:将这些规模更小的子问题逐个击破;
合:将已解决的子问题逐层合并,最终得出原问题的解;
应用
Leetcode 169. 多数元素
问题描述
给定一个大小为 n 的数组,找到其中的众数。众数是指在数组中出现次数大于 [n/2] 的元素。你可以假设数组是非空的,并且给定的数组总是存在众数。
思路
确定切分的终止条件
直到所有的子问题都是长度为 1 的数组,停止切分。
准备数据,将大问题切分为小问题
递归地将原数组二分为左区间与右区间,直到最终的数组只剩下一个元素,将其返回
处理子问题得到子结果,并合并
长度为 1 的子数组中唯一的数显然是众数,直接返回即可。
如果它们的众数相同,那么显然这一段区间的众数是它们相同的值。
如果他们的众数不同,比较两个众数在整个区间内出现的次数来决定该区间的众数
代码
class Solution {
public:
int majorityElement(vector& nums) {
int res = 0, cnt = 0;
for (int num : nums) {
if (cnt == 0) {res = num; ++cnt;}
else (num == res) ? ++cnt : --cnt;
}
return res;
}
};
Leetcode 53. 最大子序和
问题描述
给定一个整数数组 nums ,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。
思路
确定切分的终止条件
直到所有的子问题都是长度为 1 的数组,停止切分。
准备数据,将大问题切分为小问题
递归地将原数组二分为左区间与右区间,直到最终的数组只剩下一个元素,将其返回
处理子问题得到子结果,并合并
将数组切分为左右区间
对与左区间:从右到左计算左边的最大子序和
对与右区间:从左到右计算右边的最大子序和
由于左右区间计算累加和的方向不一致,因此,左右区间直接合并相加之后就是整个区
间的和
最终返回左区间的元素、右区间的元素、以及整个区间(相对子问题)和的最大值
代码
class Solution {
public:
int maxSubArray(vector& nums) {
vector dp(nums.size());
dp[0] = nums[0];
int res = nums[0];
//循环所有的终点
for (size_t i = 1; i < nums.size(); i++){
dp[i] = nums[i] + (dp[i - 1] > 0 ? dp[i - 1] : 0);
res = max(res, dp[i]);
}
return res;
}
};
Leetcode 50. Pow(x, n)
问题描述
实现 pow(x, n) ,即计算 x 的 n 次幂函数。
思路
确定切分的终止条件
对 n 不断除以2,并更新 n ,直到为0,终止切分
准备数据,将大问题切分为小问题
对 n 不断除以2,更新
处理子问题得到子结果,并合并
x 与自身相乘更新 x
如果 n%2 ==1 将 p 乘以 x 之后赋值给 p (初始值为1),返回 p
最终返回 p
代码
class Solution {
public:
double myPow(double x, int n) {
if (n == 0) return 1;
double half = myPow(x, n / 2);
if (n % 2 == 0) return half * half;
if (n > 0) return half * half * x;
return half * half / x;
}
};