❀环境配置❀win10安装cuda,cudnn,pytorch-gpu,tensorflow-gpu后测试

❤❤❤目录❤❤❤

Step1:查看需要下载的cuda驱动版本

Step 2 查看合适的CUDA

Step3下载驱动

Step4下载合适的cuda

Step5下载合适的cudnn

 step6检测cuda是否装好 nvcc -V

step7安装pytorch-gpu

step8pycharm测试是否装好

step10安装tensorflow-gpu

参考文献:


PC插上GPU后,打开我的电脑=》属性=》设备管理器=》显示适配器

环境AMD处理器,AMD显卡,加NVIDIA GeForce 1060 3GB显卡(GPU)

此刻显示已经安装好的GPU。在屏幕右键就会有nvidia控制面板。然后点击同意。

如果出现,不能使用的情况

 解决方法参考【1】,把显示屏的线换个位置插就好啦。

Step1:查看需要下载的cuda驱动版本

这时右键打开nvidia展示板

 推荐的nvidia的驱动为456.71.然后打开系统信息

Step 2 查看合适的CUDA

建议安装11.1.96

 (还有一种查询方法是cmd=>nvidia-smi

只要插上GPU就会有这个显示,没有的话,在显示适配器处查看显卡是否插好

Driver version后面就是建议的驱动,CUDA Version后面就是建议的cuda版本.

 )

Step3下载驱动

 在google直接输入需要的版本,就可以直接下载。

 下载后双击

Step4下载合适的cuda

也可以利用这个网站https://developer.nvidia.com/cuda-toolkit-archive。

 根据上面查出来的版本下载,要不然看官网推荐的,都是最新的版本,个人觉得不一定好用。

 选好自己的电脑系统,类型就可以直接下载了。

 下载后双击,默认c盘,不想装c盘,可以换到别的路径,就开始安装了。

 

 

 

 因为储存空间不足,无法安装,改变存储路径,然后

 

 

 

Step5下载合适的cudnn

不用去看那么多繁琐的网页,只要打开网页,上面有写cuda对应的cudnn.

打开 cuDNN Archive | NVIDIA Developer

 

 我的情况的话,cuda11.1所以我就随便下载一个。(里面虽然有很多cuda11.1可以用的版本,但是随便下载一个就可以,因为都是兼容的)

 

点击后需要注册,注册部分省略。(建议google账号登录)

登录后点击下载,然后解压。

 把文件复制到刚才的cuda下载位置下

 

 

 step6检测cuda是否装好 nvcc -V

step7安装pytorch-gpu

打开pycharm,检测项目是否可以运行

因为使用的是pytorch的学习框架,之前是cpu,所以

 卸载torch,torchvision,

 

重装后

在cmd处提示cuda安装成功,在pycharm中显示false

打开pytorch官网https://pytorch.org/,下载

 

 因为红色框里没有11.1,所以打开

 

 找到自己的cuda版本

 

 我的如下

conda install pytorch==1.8.0 torchvision==0.9.0 torchaudio==0.8.0 cudatoolkit=11.1 -c pytorch -c conda-forge

 因为我是在anaconda下的虚拟环境,所以打开虚拟环境然后输入命令:

 (使用pip命令安装,直接卡死,如果是在anaconda上创建的环境,建议使用conda)

step8pycharm测试是否装好

 这时打开pycharm,测试代码

# -*- coding:utf-8 -*-

import torch
print(torch.__version__)

print(torch.cuda.is_available())
print(torch.version.cuda)
print(torch.backends.cudnn.version())

import platform
print(platform.python_version())
import torchvision
print(torchvision.__version__)

 结果就装好啦!!

step10安装tensorflow-gpu

首先创建一个虚拟环境tf

conda create -n tf python=3.7
#创建完成后激活虚拟环境
activate tf

 

 寻找cuda对应版本,网站:在 Windows 环境中从源代码构建  |  TensorFlow

 

 我的cuda是11.1,cuDNN是8.1,所以我下载tensorflow_gpu-2.6

conda install tensorflow-gpu==2.6

 在tf中虚拟环境安装。

在pycharm中输入

import tensorflow as tf
print(tf.__version__)

 然后就可以啦,之前用pip install tensorflow安装总是出错,如果用anaconda环境,还是建议使用conda安装。

参考文献:

【1】 https://www.baoge.net/article/92857.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

夏天|여름이다

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值