❤❤❤目录❤❤❤
PC插上GPU后,打开我的电脑=》属性=》设备管理器=》显示适配器
环境AMD处理器,AMD显卡,加NVIDIA GeForce 1060 3GB显卡(GPU)
此刻显示已经安装好的GPU。在屏幕右键就会有nvidia控制面板。然后点击同意。
如果出现,不能使用的情况
解决方法参考【1】,把显示屏的线换个位置插就好啦。
Step1:查看需要下载的cuda驱动版本
这时右键打开nvidia展示板
推荐的nvidia的驱动为456.71.然后打开系统信息
Step 2 查看合适的CUDA
建议安装11.1.96
(还有一种查询方法是cmd=>nvidia-smi
只要插上GPU就会有这个显示,没有的话,在显示适配器处查看显卡是否插好
Driver version后面就是建议的驱动,CUDA Version后面就是建议的cuda版本.
)
Step3下载驱动
在google直接输入需要的版本,就可以直接下载。
下载后双击
Step4下载合适的cuda
也可以利用这个网站https://developer.nvidia.com/cuda-toolkit-archive。
根据上面查出来的版本下载,要不然看官网推荐的,都是最新的版本,个人觉得不一定好用。
选好自己的电脑系统,类型就可以直接下载了。
下载后双击,默认c盘,不想装c盘,可以换到别的路径,就开始安装了。
因为储存空间不足,无法安装,改变存储路径,然后
Step5下载合适的cudnn
不用去看那么多繁琐的网页,只要打开网页,上面有写cuda对应的cudnn.
打开 cuDNN Archive | NVIDIA Developer,
我的情况的话,cuda11.1所以我就随便下载一个。(里面虽然有很多cuda11.1可以用的版本,但是随便下载一个就可以,因为都是兼容的)
点击后需要注册,注册部分省略。(建议google账号登录)
登录后点击下载,然后解压。
把文件复制到刚才的cuda下载位置下
step6检测cuda是否装好 nvcc -V
step7安装pytorch-gpu
打开pycharm,检测项目是否可以运行
因为使用的是pytorch的学习框架,之前是cpu,所以
卸载torch,torchvision,
重装后
在cmd处提示cuda安装成功,在pycharm中显示false
打开pytorch官网https://pytorch.org/,下载
因为红色框里没有11.1,所以打开
找到自己的cuda版本
我的如下
conda install pytorch==1.8.0 torchvision==0.9.0 torchaudio==0.8.0 cudatoolkit=11.1 -c pytorch -c conda-forge
因为我是在anaconda下的虚拟环境,所以打开虚拟环境然后输入命令:
(使用pip命令安装,直接卡死,如果是在anaconda上创建的环境,建议使用conda)
step8pycharm测试是否装好
这时打开pycharm,测试代码
# -*- coding:utf-8 -*-
import torch
print(torch.__version__)
print(torch.cuda.is_available())
print(torch.version.cuda)
print(torch.backends.cudnn.version())
import platform
print(platform.python_version())
import torchvision
print(torchvision.__version__)
结果就装好啦!!
step10安装tensorflow-gpu
首先创建一个虚拟环境tf
conda create -n tf python=3.7
#创建完成后激活虚拟环境
activate tf
寻找cuda对应版本,网站:在 Windows 环境中从源代码构建 | TensorFlow
我的cuda是11.1,cuDNN是8.1,所以我下载tensorflow_gpu-2.6
conda install tensorflow-gpu==2.6
在tf中虚拟环境安装。
在pycharm中输入
import tensorflow as tf
print(tf.__version__)
然后就可以啦,之前用pip install tensorflow安装总是出错,如果用anaconda环境,还是建议使用conda安装。
参考文献:
【1】 https://www.baoge.net/article/92857.html