Flow Matching 是什么?

Flow Matching 是让模型学会一条“路径”,把一个随机点(比如噪声)顺滑地“流动”到目标数据的过程。

想象你有两个点,一个是起点,一个是终点。你已经知道用线性插值能画出这两个点之间的直线。那么 Flow Matching 的任务,就是教模型沿着这条“直线路径”去走,每一步往哪个方向走、走多快

通俗类比:导航软件

想象你在用地图导航从 A 地(起点)走到 B 地(终点):

  • 你知道直线路径(线性插值告诉你路线)。

  • 但是你需要实时告诉导航系统“当前我在哪,该往哪走”

  • Flow Matching 就是训练一个“导航系统”,学会告诉模型每一时刻的前进方向。

这个“方向”就是一个 向量场(vector field),告诉你:

如果我现在在某个点,时间是 t,那么我应该往哪个方向动。

数学解释

 给定起点 x0​,终点 x1,用线性插值构造路径:

那么这个路径的速度(也就是方向)是常量: 

Flow Matching 就是学一个模型 v(x,t)≈x1−x0, 也就是说:学会在路径上的每个位置给出“正确的前进方向”。

FM有什么用?

在生成模型中,比如扩散模型、flow-based 模型,我们想从“随机点”生成真实数据。Flow Matching 提供了一种:

  • 不用噪声预测、

  • 不用 score function、

  • 直接建模路径的方法。

换句话说,它是一种“不走弯路”的生成方式—— 给你一条理想路线,学会沿着走!

举个实验例子

比如你训练一个模型,把标准高斯分布的点(起点)转换成一张猫的图片的 latent 向量(终点)。你就:

  1. 抽一个高斯样本 x0​,

  2. 用训练好的编码器拿到猫的 latent 表示 x1​,

  3. 构造线性路径 x(t),

  4. 训练模型 v(x,t)逼近路径方向。

训练好后,你只需要从 x0出发,用这个向量场引导它一步步“流”到猫图像对应的隐空间 —— 这就是 Flow Matching 的生成过程。

📌 总结一句话

Flow Matching 就是:“我已经知道从哪里到哪里(起点到终点),我要训练一个模型,在任意中间位置都能告诉我应该往哪走”,而这个“走”的路径,通常用线性插值定义


在大语言模型(LLM)中,Flow Matching(FM)策略通常被用来训练潜在空间中的向量场,以实现高效、平滑地从随机初始化(如高斯噪声)“流”向语言表示或模型权重,尤其在以下两个方向中具有代表性:

应用于 LLM 蒸馏 / 微调

在参数空间或表示空间中,Flow Matching 可用于训练一个连续路径模型,将:

  • ✅ 一个轻量模型的初始表示(或参数) x0

  • ✅ 流向一个强大教师模型的表示(或参数) x1

训练目标是:
学习一个向量场 v(x,t),满足对所有 t 有:

其中路径 x(t)通常用线性插值定义:

应用于表示空间训练(如 Diffusion Transformer)

一些生成式 Transformer 模型(如 DiffuSeq、FlowSeq)中,在训练阶段:

  • 目标 token 表示 x1和随机初始表示 x0 定义好;

  • 用 Flow Matching 拟合它们之间的路径方向;

  • 最终生成时,从随机向量出发,沿着学到的流动轨迹“流”向真实句子向量,实现解码。

 训练流程(伪代码)

# x0: 起点 (如随机 token embedding)
# x1: 终点 (如真实句子的 embedding)
# t: 时间采样
t = torch.rand(batch_size, 1)

# 路径上的点
x_t = (1 - t) * x0 + t * x1

# 真正的速度向量(线性插值导数是常量)
v_target = x1 - x0

# 模型预测的向量场
v_pred = model(x_t, t)

# 最小化方向误差(MSE loss)
loss = ((v_pred - v_target) ** 2).mean()
loss.backward()

优势

在语言模型中的延伸方向

  1. Embedding Flow Matching:生成 token embedding 的向量场;

  2. Hidden State Matching:transformer 中间层状态的连续路径建模;

  3. 权重空间 Matching(如 model soup):多个模型参数之间的“流动”建模;

  4. 少样本 / 零样本迁移:基于 flow 把旧任务表示迁移到新任务。

📌 总结一句话:

在大语言模型中,Flow Matching 通过建模表示或参数空间中的“连续轨迹”,用向量场预测从初始状态流向目标状态的路径,从而实现更平滑、更高效的表示学习或生成过程。

📢 想要了解更多人工智能,可在VX小程序搜索🔍AI Pulse,获取更多最新内容。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

夏天|여름이다

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值