问题描述:戳这里
大致题意是给出n对数 一次操作可以交换左右两个数,问最小的操作次数使得左边的数之和 和 右边的数字之和 的差值最小。
题解:
巧妙的转化为一个背包问题。
先将大的数都调整到左边,所以每次调整都可以使差值减小,改变的差值就是背包的体积,价值是1或者-1,若本身就满足左大右小,那么重量为-1,即是一个反悔的过程。
所以要求的就是使得体积尽量大的最小重量。
详见注释
code:
#include<bits/stdc++.h>
using namespace std;
int v[1005],w[1005],f[1005][10000],vis[1005][10000];
int n,V=0,st=0;
int main()
{
cin>>n;
for(int i=1;i<=n;i++)
{
int x,y;
scanf("%d%d",&x,&y);
if(x>y)
{
v[i]=2*(x-y);
w[i]=1;
V+=(x-y);
}
else
{
v[i]=2*(y-x);
w[i]=-1;
V+=(y-x);
st++;
}
}
for(int i=1;i<=n;i++)
for(int j=1;j<=V;j++)
{
f[i][j]=f[i-1][j];
vis[i][j]=vis[i-1][j];
if(vis[i-1][j-v[i]] || j-v[i]==0)
if(!vis[i][j])
{
vis[i][j]=1;
f[i][j]=f[i-1][j-v[i]]+w[i];
}
else f[i][j]=min(f[i][j],f[i-1][j-v[i]]+w[i]);
}
for(int i=V;i>=1;i--) if(vis[n][i]){ cout<<f[n][i]+st; break;}
return 0;
}