递归

几个整数中公有的约数,叫做这几个数的公约数;其中最大的一个,叫做这几个数的最大公约数。例如:12、16的公约数有1、2、4,其中最大的一个是4,4是12与16的最大公约数,一般记为(12,16)=4。
欧几里德算法又称辗转相除法,是指用于计算两个正整数a,b的最大公约数。应用领域有数学和计算机两个方面。计算公式gcd(a,b) = gcd(b,a mod b)。

1.辗转相除法求最大公约数


#include <stdio.h>
int gcd(int m,int n);
int main(void)
{
    int m,n,t;
    scanf("%d %d",&m,&n);
    if(m<n)
    {
        t=m;
        m=n;
        n=t;
    }
    n=gcd(m,n);
    printf("%d",n);
    return 0;
}
int gcd(int m,int n)
{
    int r;
    r=m%n;
    if(r==0)
        {return n;}
    else
    {
        gcd(n,r);
    }
}
 ———————————————— 
版权声明:本文为CSDN博主「孤木不成林」的原创文章,遵循CC 4.0 by-sa版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/ychhh/article/details/80305197

2 阶乘和斐波那契数列,字符串长度

#include <stdio.h>
// 1  2  3  4  5  6  7   8   9  
// 1  1  2  3  5  8  13  21  34
int jiechen(int n);
int JC(int n);
int FBNQ1(int n);
int FBNQ2(int n);
int Len(char *str);

int main()
{
	/*printf("%d\n",jiechen(5));*/

	/*printf("%d\n",JC(5));*/

	/*printf("%d\n",FBNQ1(5));
	printf("%d\n",FBNQ2(8));*/

	printf("%d\n",Len("12345"));
	return 0;
}

int jiechen(int n)
{
	int sum = 1;
	int i;
	for(i=n;i>=1;i--)
		sum = sum * i;
	return sum;
}

int JC(int n)
{
	if(n == 1)
		return 1;

	return n * JC(n - 1);
}

int FBNQ1(int n)
{
	int i;
	int v1 = 1,v2 = 1,v3;
	if(n == 1 || n == 2)
		return 1;
	 for(i = 3;i<=n;i++)
	   {
		  v3 = v1 + v2;
		  v1 = v2;
		  v2 = v3;
	   }
	
	return v3;
}

int FBNQ2(int n)
{
	if(n == 1 || n == 2)
		return 1;

	return FBNQ2(n-1) + FBNQ2(n -2);
}

int Len(char *str)
{
	if(*str == '\0')
		return 0;
	str++;
	return Len(str) + 1;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值