自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(13)
  • 收藏
  • 关注

原创 图像分类杂谈

1 数据集和经典网络的交响曲深度学习作为数据驱动的工具,需要大量优质的数据集才可以展开相应的工作,总结了现阶段图像分类各个领域的数据,并指出其适用的分类任务,为各位读者展开相应的工作,提供了指南针。同时,对经典的图像分类网络进行了总结,详细介绍了图像分类发展史上的重大突破和典型的设计思想。类别不平衡标签噪声在数据集制作过程中,由于主观、客观的原因,会导致标签噪声的出现,其存在会对最终的分类模型性能造成一定的影响。因此,在实际应用过程中,总是要对现有的数据集进行清洗,以避免标签噪声的干扰。对抗

2020-06-14 01:44:18 34

原创 GoogLeNet网络整理

大体思路1.Inception v1网络, 将1x1, 3x3, 5x5的conv和3x3的pooling,stack在一起,一方面增加了网络的width,另一方面增加了网络对尺度的适应性2. v2的网络在v1的基础上,进行了改进,一方面了加入了BN层,减少了Internal Covariate Shift(内部neuron的数据分布发生变化),使每一层的输出都规范化到一个N(0, 1)的高斯,另外一方面学习VGG用2个3x3的conv替代inception模块中的5x5,既降低了参数数量,也加速计算;

2020-06-14 01:26:39 35

原创 DenseNet:比ResNet更优的CNN模型

前言在计算机视觉领域, 卷积神经网络已经成为最主流的方法, 比如GoogleNet, VGG-19, Incepetion等模型。CNN史上的一个里程碑事件是ResNet模型的出现, ResNet可以训练出更深的CNN模型,从而实现更高的准确度。ResNet模型的核心是通过建立前面层与后面层之间的‘短路连接’, 这样有助于训练过程中梯度的反向传播,从而能训练出更深的CNN网络。DenseNet网络的思想基本与ResNet一致,但是它建立的是前面所有层与后面层的密集连接。DenseNet的另一大特色是通过特

2020-06-13 00:31:31 48

原创 .npy文件格式

深度学习–迁移学习在使用训练好的模型时,其中有一种保存的模型文件格式叫.npy。打开方式·实现代码:import numpy as nptest=np.load('./bvlc_alexnet.npy',encoding = "latin1") #加载文件doc = open('1.txt', 'a') #打开一个存储文件,并依次写入print(test, file=doc) #将打印内容写入文件中模型文件(.npy)刨析:import numpy as npfrom numpy

2020-06-10 13:22:05 332

原创 ResNet的理解

深度神经网络总体从网络深度,宽度,网络密集度和网络压缩四个整体方向。ResNet就是从网络深度上去分类它。深度神经网络通常店铺比较难训练,所以作者提出了残差学习的框架来减轻深层网络训练的难度。网络能表达的深层特征是许多视觉识别任务的关键。而ResNet是‘简单而实用’并存,之后很多方法都建立在ResNet的基础上完成的,检测,分割,识别等领域里得到广泛的应用。ResNet的意义随着网络的加深,出现了训练集准确率下降的现象,我们可以确定这不是由于Overfit过拟合造成的。残差指的是什么?其中Res

2020-06-10 12:09:13 81

原创 VGG分类模型的分析与总结

论文名称为:“Very Deep Convolutional Networks For Large-Scale Image Recognition”随着超大规模图像数据集如imageNet,和高性能计算机系统如GPUs和大规模分布式集群产生,基于卷积神经网络的图像分类,定位与检测越来越强大。先前的AlexNet网络受限于当时的GPU等计算机系统性能的影响而无法训练更深更大的网络,使得分类正确率不高。在VGG模型中,基本沿用了AlexNet模型架构, 但是比alexnet更深, 且使用了神经网络的集成

2020-06-07 11:57:20 179

原创 VGG16和VGG19的理解

VGG卷积神经网络是由牛津大学在2014年提出来的模型,当这个模型被提出来时, 由于它的简洁性和实用性,马上成为了当时最流行的卷进神经网络模型。它在图像分类和目标检测任务中都表现出非常好的效果。它主要的贡献是展示出网络的深度是算法优良性的关键部分。VGG16的网络结构非常一致,从头到尾全部使用的使用的是3x3的卷积核2x2的pooling.VGG不好的一点是它耗费更多的计算资源, 并且使用了更多的参数,导致更多的内存占用。其中绝大多数的参数都是来自于第一个全连接层。目前使用比较多的网络结构主要有Res

2020-06-07 00:34:37 937

原创 数据结构小白基础概念

数据结构的一些概念:1.数据:所有能被输入到计算机中,且能被计算机处理的符号的集合。是计算机操作的对象的总裁。2.数据元素: 数据中的一个‘体’, 数据及结构中讨论的基本单位。3.数据项:数据的不可分割的最小单位, 一个数据元素可有若干个数据项组成4.数据类型:在一种程序设计语言中,变量所具有的数据种类。整型, 浮点型, 字符串等等5.逻辑结构:数据之间的相互关系:1). 集合 结构中的数据元素除了同属于一种类型外,别无其他关系2). 线性结构 数据元素之间一对一的关系3)

2020-06-05 15:38:44 36

原创 关于tensorflow的官方格式TFrecords

tfrecords文件生成与读取tfrecords的文件生成(存储)tfreocrds数据将原始图像数据和标签数据以二进制格式存储。存储内容以如下形式存储:```pythonexample = tf.train.Example(features = tf.train.Feayures(feature = {‘label’:tf.train.Feature(int64_list = tf.train.Int64List(value = [label])),‘width’:tf.train.Feat

2020-06-05 00:36:26 58

原创 tensorflow用alexnet网络实现17flowers分类---适合入门练手

百度云盘链接:https://pan.baidu.com/s/1wMAhC0dTlH8S62MiQTaK0A提取码:yyfn这个实现的过程中还有些需要仔细琢磨的知识点要整理和思考!!!

2020-06-04 23:48:05 91

原创 AlexNet

论文:《ImageNet Classification with Deep Convolutional Neural Networks》网络结构第一层:卷积层1,输入为 224×224×3的图像, 卷积核的数量为96,论文中两片GPU分别计算48个核; 卷积核的大小为 11×11×31; stride = 4, stride表示的是步长, pad = 0, 表示不扩充边缘;卷积后的图形大小是怎样的呢?wide = (224 + 2 * padding - kernel_size) / stride

2020-06-03 22:45:54 68

原创 dropout

dropout是指在深度学习网络的训练过程中,对于神经网络单元,按照一定的概率将其暂时从网络中丢弃。注意是暂时,对于随机梯度下降来说,由于是随机丢弃,从而每一个mini-batch都在训练不同的网络。dropout是CNN中防止过拟合提高效果的一个大杀器。大规模的神经网络有两个缺点:费时和容易过拟合。dropout可以类似地想象成跟机器学习的集成思想一样,网络每次训练每个batch都随机地选择之前的feature map 进行训练,dropout也能达到以下案例同样的效果,它强迫一个神经单元,和随机挑选

2020-06-03 22:43:45 63

原创 初识CNN

卷积神经网络是由神经元组成,神经元中有具有学习能力的权重和偏差。每个神经元都得到一个输入数据,进行内积运算后再进行激活函数运算。整个网络依旧是一个可导的评分函数:该函数的输入是原始的图像像素,输出是不同类别的评分。在最后一层(往往是全连接层),网络依旧有一个损失函数(比如SVM或softmax),并且在神经网络中我们实现的各种技巧和要点依旧适用于卷积神经网络。 **用来构建卷积网络的各种层** 一个简单的卷积神经网络是由各种层按照顺序排列组成,网络中的每个层使用一个可以微分的函数将激活...

2020-06-01 12:53:58 34

空空如也

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人 TA的粉丝

提示
确定要删除当前文章?
取消 删除