VGG16和VGG19的理解

本文介绍了VGG16和VGG19卷积神经网络,强调了网络深度对算法性能的重要性。VGG模型以3x3卷积核和2x2 pooling构建,尽管参数量大、计算资源消耗高,但其深度结构能提取高级特征。VGG-16是最受欢迎的变种,通过网络加深提取抽象特征,同时卷积核参数共享增强了网络的尺度不变性。尽管有参数过多的问题,但其预初始化策略帮助快速收敛。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

VGG卷积神经网络是由牛津大学在2014年提出来的模型,当这个模型被提出来时, 由于它的简洁性和实用性,马上成为了当时最流行的卷进神经网络模型。它在图像分类和目标检测任务中都表现出非常好的效果。
它主要的贡献是展示出网络的深度是算法优良性的关键部分。VGG16的网络结构非常一致,从头到尾全部使用的使用的是3x3的卷积核2x2的pooling.
VGG不好的一点是它耗费更多的计算资源, 并且使用了更多的参数,导致更多的内存占用。其中绝大多数的参数都是来自于第一个全连接层。
目前使用比较多的网络结构主要有ResNet(151-1000层), GoogleNet(22层), VGG19层。大多数模型都是基于这几个模型上
改进, 采用新的优化算法, 多模型融合等。

重点介绍VGG
VGG是从alexnet发展而来的网络, 主要修改一下两个方面:
1,在第一个卷基层层使用更小的filter尺寸和间隔(33); 2,在整个图片和multi-scale上训练和测试图片。
3
3 filter:
引入cs231n上面一段话:
几个小滤波器卷积层的组合比一个大滤波器卷积层好:
假设你一层一层地重叠了3个3x3的卷积层(层与层之间有非线性激活函数)。在这个排列下,第一个卷积层中的每个神经元都对输入数据体有一个3x3的视野。
第二个卷积层上的神经元对第一个卷积层有一个3x3的视野,也就是对输入数据体有5x5的视野。同样,在第三个卷积层上的神经元对第二个卷积层有3x3的视野,
也就是对输入数据体有7x7的视野。假设不采用这3个3x3的卷积层,二是使用一个单独的有7x7的感受野的卷积层,那么所有神经元的感受野

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值