Python 每日一记272@Java加权无向图实现

加权无向图

和无向图不同的是,加权无向图在边中加入了另外一个属性,权重,这个权重可以是这个边的任何属性,比如长度,时间,粗细,颜色等等。正是因为假如了另外一个属性,边的实现就相对复杂了,因此将边抽象为一个类,这个类包括两个节点成员变量和一个权重成员变量,用来模拟边。
加权无向图有何用的呢?有用,比如最短路径问题,因为加了权重属性,就可以表示边的长度了。

java代码

package mypackage;
import java.lang.ref.PhantomReference;
import java.util.Iterator;

//队列类,用链表实现,后面有用
class Queue<T> implements Iterable<T>{
    //    节点个数,头节点,尾节点
    private int N;
    private Node head;
    private Node last;
    //节点类
    public class Node {
        public T data;
        public Node next;

        public Node(T data, Node next) {
            this.data = data;
            this.next = next;
        }
    }
    //构造方法,初始化
    public Queue() {
        this.N = 0;
        this.head = new Node(null,null);
        this.last = null;
    }
    //队列长度
    public int size(){
        return N;
    }
    //队列是否为空
    public boolean isEmpty(){
        return N==0;
    }
    //入队列
    public void enqueue(T data){
//        如果队列为空,说明尾节点为空,让新节点为尾节点,头借点指向尾节点
        if (isEmpty()){
            last=new Node(data,null);
            head.next=last;
//            如果队列不为空,让新节点为尾节点,老的尾节点指向新尾节点
        }else {
            Node oldlast=last;
            last=new Node(data,null);
            oldlast.next=last;
        }
//        最后元素+1
        N++;
    }
    //出队列,注意先入先出,每次出的节点就是head指向的第一个节点,然后让head只想第二个节点即可
//    且注意,如果队列为空,要将last=null
    public T dequeue(){
//        如果为空,返回null
        if (isEmpty()){
            return null;
//            如果不为空,让head只想第二个节点,元素-1,且如果队列为空,要将last=null
        }else {
            Node oldfirst=head.next;
            head.next=oldfirst.next;
            N--;

            if (isEmpty()){
                last=null;
            }
//            返回弹出的元素
            return oldfirst.data;
        }
    }

    //    遍历
    @Override
    public Iterator iterator() {
        return new QIterator();
    }
    //    创建一个内部类实现Iterator接口
    public class QIterator implements Iterator {
        //        定义一个遍历的节点
        private Node n;

        public QIterator() {
//            初始化为0索引位置
            this.n = head;
        }

        //重写两个方法
        @Override
        public boolean hasNext() {
//            这个方法判断是否超出最大索引,如果超出会停止遍历
            return n.next != null;
        }

        @Override
        public Object next() {
//            这个方法会遍历得每个节点
            n = n.next;
            return n.data;
        }
    }
}

//边类,因为加权无向图的边比较麻烦,因此专门用一个类表示边
class Edge implements Comparable<Edge>{
    //两个顶点,一个权重
    private int v;
    private int w;
    private double weigth;

    public Edge(int v, int w, double weigth) {
        this.v = v;
        this.w = w;
        this.weigth = weigth;
    }

    //获取边的权重值
    public double getWeigth(){
        return weigth;
    }
    //获取边一个点
    public int either(){
        return v;
    }

    //获取边另一个点
    public int other(int x){
        if (x==v){
            return w;
        }else {
            return v;
        }
    }
    //重写compareTo方法,提供比较规则,以weigth比较边的大小
    @Override
    public int compareTo(Edge o) {
        int cmp;
        if (this.weigth>o.weigth){
            cmp= 1;
        }else if (this.weigth==o.weigth){
            cmp= 0;
        }else {
            cmp= -1;
        }
        return cmp;
    }
}

//加权无向图,注意边是单独的一个类实现的
class WeigthGraph{
    private int V;//顶点数
    private int E;//边数
    //adj是一个数组,数组的类型的队列,队列里面装的数据类型是Edge边类
    private Queue<Edge>[] adj;//邻接表,注意索引是每个顶点
    //构造方法,传入顶点个数,初始化边数为0,
    public WeigthGraph(int v) {
        this.V = v;
        this.E=0;
        this.adj=new Queue[v];//初始化队列数组,大小为顶点的个数
        for (int i = 0; i <adj.length ; i++) {
            adj[i]=new Queue<Edge>();//初始化数组的每个队列
        }
    }

    //获得顶点的个数
    public int getV(){
        return V;
    }

    //添加边,注意这里的边是单独的类实现的,传入一个边参数,让这个边在两个顶点的邻接表中
    //真正的边是需要实现类的
    public void addEdge(Edge edge){
        int v=edge.either();
        int w=edge.other(v);
        adj[v].enqueue(edge);
        adj[w].enqueue(edge);
        E++;//边数+1
    }

    //    获取边的个数
    public int getE(){
        return E;
    }

    //获取某个顶点相邻的所有边,返回这个队列即可
    public Queue<Edge> getAdj(int v){
        return adj[v];
    }

    //获取图的所有边
    public Queue<Edge> getEdges(){
        Queue<Edge> allEdges=new Queue<>();//用来装边
        for (int v = 0; v <V ; v++) {
            for (Edge e:adj[v]) {
            //因为边是无向的,因此如果简单的暴力遍历,就会重复提取边
            //因此在将边入栈前判断一下,只有当右顶点大于左顶点是才入栈,这样就不会重复。
              if (e.other(v)>v){
                  allEdges.enqueue(e);
              }
            }
        }
        return allEdges;
    }
}



//测试
public class MyJava {

    public static void main(String[] args){
        WeigthGraph weigthGraph=new WeigthGraph(6);
        //添加边
        weigthGraph.addEdge(new Edge(0,1,10));
        weigthGraph.addEdge(new Edge(1,2,15));
        weigthGraph.addEdge(new Edge(2,3,20));
        weigthGraph.addEdge(new Edge(0,4,10));
        weigthGraph.addEdge(new Edge(0,5,100));
        System.out.println("顶点数量:"+weigthGraph.getV());
        System.out.println("边的条数:"+weigthGraph.getE());
        System.out.println("0相邻的顶点:");
        for (Edge x:weigthGraph.getAdj(0)){
            System.out.print(x.other(0)+"--");
        }

        System.out.println();
        System.out.println("所有边(左顶点+右顶点+长度):");
        for (Edge x:weigthGraph.getEdges()){
            System.out.print(x.either()+"--"+x.other(x.either())+"--"+x.getWeigth()+"  |  ");
        }
    }
}

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值