Python 每日一记2>>>concat/merge

pandas 数据预处理相关函数
1、concat 此函数用于数据的简单合并堆叠,axis=0 表示按行合并,即增加行的数量,axis=1 表示按列合并,即增加列数,另外需要注意参数join 分别是inner和outer,inner 表示内连接,连接轴外的其他轴向上的索引按交集合并,outer表示按并集合并。需要注意的是,合并是需要索引为基础的,因此要想实现“匹配”的作用,则需要索引一致。
2、merge 此函数用于主键合并,按照相同的列将不同的两个表合并起来,注意,具有天然的匹配功能,添加多个主键可实现多主键合并,避免多循环匹配的速度慢问题。另外外,除了内连接和外连接参数,还有左连接和右连接,左连接表示左边取全部,右边取部分,反之右连接,,,,/
3.conbine_first 重叠合并:两份数据几乎一致,但是某些特征在一张表上完整,但另一张表上不完整,此时用此函数可直接解决问题。联合取并集,但是不同于concat的堆叠,也不同于merge,简单的说,更加类似与concat 和merge的结合。

**综上,**我们merge更为常用,其不仅实现堆叠,还进行匹配,concat 则显得较为简单笨拙,大多数情况只是数据的简单堆叠,为了实现匹配,还得对索引进行一致性处理。但merge不能对行进行堆叠,因为其主键针对的是列。
两个问卷的数据进行合并,即记录的合并,则可以考虑使用concat,同个问卷的多个问题合并,根据不同情况可以使用concat 或者merge。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值