1、回归模型的构建与评价
回归于分类算法的区别在于回归的标签是连续的,分类的标签是离散的,回归有很多算法,如下介绍线性回归:
经过回归建模和预测,我们得到预测的房价。
对于回归模型的评价,由于回归的标签是连续的,不同于分类模型等,因此其评价模型有一定的不同,主要的指标是可解释方差值和R平方值,越接近于1,模型效果越好。如下
我们得到结果为0.7左右,表明模型整体拟合效果较好。
小问题:我们能建模,能预测,能评价,如何得出这个方程呢?
1、回归模型的构建与评价
回归于分类算法的区别在于回归的标签是连续的,分类的标签是离散的,回归有很多算法,如下介绍线性回归:
经过回归建模和预测,我们得到预测的房价。
对于回归模型的评价,由于回归的标签是连续的,不同于分类模型等,因此其评价模型有一定的不同,主要的指标是可解释方差值和R平方值,越接近于1,模型效果越好。如下
我们得到结果为0.7左右,表明模型整体拟合效果较好。
小问题:我们能建模,能预测,能评价,如何得出这个方程呢?