- 博客(53)
- 收藏
- 关注
原创 AI越聪明越智能☞ 越容易出错?
应用:在“忽略关闭命令”的例子中,AI应回应:“检测到指令冲突。· 应用:系统需要记录完整的“决策日志”:接收到的指令、感知到的上下文、触发的规则、存在的冲突以及最终的决策理由。4. 模型的不可解释性:对于复杂的深度学习模型,即使它做出了一个化解了悖论的决策,我们也往往难以理解其内部的推理过程,无法验证其逻辑是否一致可靠,这被称为“黑箱”问题。在AI的语境下,“祖父悖论”的本质可以概括为:一个系统接收到的指令或信息,可能会否定或破坏该系统自身正确执行该指令所依赖的逻辑前提、数据基础或存在状态。
2025-11-29 19:13:08
569
原创 智能汽车_ADAS自动泊车技术框架简介
自动泊车系统主要是利用遍布车辆自身和周边环境里的传感器,测量车辆自身与周边物体之间的相对距离、速度和角度,然后通过车载计算平台或云计算平台计算出操作流程,并控制车辆的转向和加减速,以实现自动泊入、泊出及部分行驶功能。半自动泊车:半自动泊车系统为驾驶员操控车速,计算平台根据车速及周边环境来确定并执行转向,对应于SAE自动驾驶级别中的L1。全自动泊车:全自动泊车为计算平台根据周边环境来确定并执行转向和加减速等全部操作,驾驶员可在车内或车外监控,对应于SAE L2级。平行式泊车:适用于路边平行车位垂直式泊车。
2025-11-23 20:39:35
1361
原创 智能汽车_车机平台化需求管理方案
功能安全等级: [单选] ASIL-A, ASIL-B, ASIL-C, ASIL-D, QM。状态: 待办 → 分析中 → 评审中 → 已批准 → 开发中 → 测试中 → 已完成。- 平台版本: [单选] Platform-v1.0, Platform-v2.0。- 车型影响范围: [多选] 车型A, 车型B, 车型C, 所有车型。- 车型A: 2024-Q3 [VEHICLE-A-201]- 车型B: 2024-Q3 [VEHICLE-B-156]
2025-11-16 22:43:37
595
原创 读毛选品人生00
启示: 面对一个宏大目标或强大竞争对手,在心态上要有必胜的信念(战略藐视),但在具体执行每一步时,必须如履薄冰,周密计划,全力以赴(战术重视)。这不是鼓励无休止的加班,而是强调在关键时刻,团队能顶住压力,全情投入,以高度的责任心和使命感去完成任务。3. “指挥员的正确的部署来源于正确的决心,正确的决心来源于正确的判断,正确的判断来源于周到的和必要的侦察,和对于各种侦察材料的联贯起来的思索。仓促上阵是职场大忌。要摒弃教条主义,将学到的理论、知识与我们的实际工作紧密结合,解决实际问题,这样的学习才有价值。
2025-11-16 22:34:39
395
原创 从软件定义到AI定义:汽车产业的范式转移与OEM的破局之道
等功能,在传统的规则编码范式下极难实现,但在数据驱动的大模型范式下,它们成为了可能。AI不仅实现更高准确率的语音识别,更能理解复杂语义、方言和情感,进行多轮对话,提供深度个性化服务,实现多模态融合交互(语音、手势、眼神)。:为每个功能(如泊车、巡航、座舱)开发独立的、小模型,无法形成系统级的智能协同和能力复用,这与AIDV的“统一大脑”思想背道而驰。:在没有构建起数据闭环和算力支撑的情况下,空谈AI功能,如同在没有炼油厂和加油站的情况下宣布要造跑车。:这是未来的“发动机”。讲故事~~ 老板很开心。
2025-11-09 15:58:28
1138
原创 简述理解_斯坦福李飞飞 《AI Agent:多模态交互前沿调查》02-XX
论文强调了多种学习机制,包括预训练(Pretraining)、零样本/少样本学习(Zero-shot/Few-shot)、强化学习(RL)和模仿学习(IL)。传统模型的“记忆”通常局限于短暂的上下文窗口,而 Agent AI 的记忆模块则是一个更持久、更结构化的系统。这些指令可以是与物理世界交互的机器人控制命令(如移动、抓取),也可以是与虚拟世界交互的API调用、代码生成或自然语言回复。这种感知是多模态的,涵盖视觉、听觉、文本、传感器数据等。感知是输入,认知是处理中枢,是 Agent 的“大脑”。
2025-11-09 08:30:11
303
原创 AI Agent和Agent AI的差距在哪里
智能体人工智能(Agent AI)” 定义为一类交互式系统,它能够感知视觉刺激、语言输入及其他基于环境的数据源,并能产生有意义的具象化动作.最近在看一些Agent AI 相关的论文,也浏览了一些技术博客,发现一些误解关于AI Agent和Agent AI.大家经常了看到很多培训,教你手把手打造AI 智能体,多半都是AI Agent.
2025-11-07 12:16:03
235
原创 简述理解_斯坦福李飞飞 《AI Agent:多模态交互前沿调查》01-XX
图1:Agent AI系统的概述,该系统可以在不同领域和应用中进行感知和行动。通过利用生成式AI和多个独立的数据源,该系统提供了一个与现实无关的训练框架。在跨现实数据的训练下,大型基础模型可以应用于物理和虚拟世界中的代理及动作相关任务。我们展示了一个能够在不同领域和应用中感知和行动的Agent AI系统的总体概览,并展望其作为一种基于代理范式的AGI发展路径。它模糊了物理与虚拟、感知与认知、学习与行动的界限,代表了一条通向通用人工智能的整合之路。,它作为一个统一的“大脑”,处于整个系统的中心位置,
2025-11-07 12:00:56
326
2
原创 智能汽车— 座舱IVI如何使用HD Map数据
将来自ADAS域的、基于SOME/IP的ADASIS v3原生数据,转换为更适合Android应用消费的格式(例如,Protobuf、FlatBuffers或简单的JSON)。对于Android应用开发者而言,他们只需要关注如何通过标准的Android车载接口去获取已经预处理好的地图数据,而无需关心底层复杂的、安全关键的车辆网络通信细节。:可以根据Android应用的需求,对数据进行加工,例如只提取渲染所需的核心几何信息,降低传输负载。应用,如导航、音乐、视频等。,作为整个座舱域的“地图数据代理”。
2025-11-04 14:19:57
1145
原创 智能网联汽车 HD map架构解析
它使得ADAS域可以专注于“驾驶”,而IVI域可以专注于“体验”,两者通过标准化的接口高效协作,共同实现了。ADAS域只提供结构化的数据,IVI负责将这些数据与其基础地图融合,并利用自身的图形引擎(通常是GPU加速)绘制出来。这是触发整个过程的必要条件。应用解析ADASIS v3协议,从中提取出车道几何、拓扑和属性信息,将其转换为内部可用的数据模型。最终,渲染出的完整、精美的车道级导航画面被输出到IVI的高分辨率屏幕上,提供给用户。服务端并不发送整个地图,而是将电子地平线内的信息,切割成一系列小的。
2025-11-04 13:35:57
977
原创 零基础学Python_温度转换程序实例
背景步骤,需要分析问题,并确认问题的可计算部分:步骤一:分析问题的计算部分步骤二:确定功能,使用IPO方法进一步分析步骤三:设计算法根据华氏和摄氏温度定义,单位刻度对应温度关系的转换公式:步骤四:编写程序很简单,但是还是出错了。
2025-11-03 09:53:41
470
原创 零基础学Python_不会coding不用怕
对于现实中的问题,解决方案有很多不同,首先比较重要的是思维,如何确定问题将问题转化为可计算部分。其实coding是整个流程中的一部分,不是最重要的。编写程序:实现整个程序。
2025-11-03 09:31:32
98
原创 零基础学Python_基础语法
你给它取个名字,比如 my_name = "张三" ,这里 my_name 就是变量名, “张三” 就是放在盒子里的值。- 比较运算符: > (大于)、 < (小于)、 == (等于)、!- 逻辑运算符: and (与)、 or (或)、 not (非)。- 算术运算符:像 + (加)、 - (减)、 * (乘)、 / (除)、 % (取余)。- 浮点数(float):带小数点的数字, height = 1.75。- 整数(int):就是不带小数点的数字,比如 age = 20。
2025-11-02 13:15:48
134
原创 零基础学Python_自动补全符号
VS Code:打开用户代码片段设置(File > Preferences > User Snippets),选择Python,添加一个片段,比如“Bracket Pair”,设置“prefix”为“br”,“body”为“($1)”。- PyCharm:在设置中找到“Live Templates”,可以新建一个模板,比如缩写为“br”,内容为“($1)”,应用到Python语言,以后输入“br”按Tab键就搞定。- PyCharm:同样输入左括号或者双引号,也能自动补全并将光标定位在中间。
2025-11-02 13:10:01
129
原创 AI助力汽车 UI 交互设计
通过微调视觉语言模型构建 Evaluative Large Action Model(ELAM),并配套发布 AutomotiveUI-Bench-4K 数据集,为汽车 UI 的理解、交互与验证提供全新解决方案
2025-11-02 11:31:23
701
原创 AI革新汽车安全软件开发
一种将生成式人工智能集成到软件开发生命周期中的新颖框架被介绍,该框架使用大语言模型自动化生成诸如C++等语言的代码,并融入以安全为重点的实践,如静态验证、测试驱动开发和迭代优化。一个反馈驱动的流程确保了测试、仿真和验证的集成,以符合安全标准。在令牌大小小于10B的模型中,Qwen2.5-Coder-7B-Instruct被证明是最有效的选择,在提供出色性能的同时,是该类别中最小的。重要的是,只有当集成阶段成功且所有静态检查都解决后,才会生成新的已验证状态,从而确保对安全性和正确性的坚定不移的承诺。
2025-11-02 11:10:19
656
原创 AI智能座舱是什么?
一个完整的AI座舱是一个复杂的系统工程,包括车载专用AI模型、多模态感知硬件、底层电子电气架构、操作系统、云管端一体化等多个层面的协同创新。· 营销话术: 很多车企会把一些基础的语音控制、预设的场景模式(如“小憩模式”)包装成“AI”,这本质上还是规则驱动的自动化,并非真正的智能。所以,下次看到车企宣传AI座舱,你可以从以上几个维度去判断,它到底是一个“接入了聊天API的智能座舱”,还是一个真正拥有“车载大脑”的AI座舱。· 体验的质变: 真正的AI座舱追求的是从“人适应车”到“车适应人”的转变。
2025-10-30 21:57:44
1123
原创 AI工具赋能需求管理 Jira
{'role': 'system', 'content': '你是一个专业的需求工程师,擅长编写清晰的需求文档...'},国内AI工具已经足够成熟来支持座舱需求工程的关键任务,关键是找到适合团队技术能力和预算的集成方案。- 用户故事格式:作为[用户角色],我希望[实现什么功能],以便[获得什么价值]作为[角色],我希望[完成什么功能],以便[达到什么商业价值]。3. 输出格式:[功能描述]、[信号接口]、[性能指标]、[验收条件]· 典型插件:有些国内开发者开发的插件已经集成了多家国内AI厂商。
2025-10-29 21:42:51
350
1
原创 AI赋能座舱产品需求开发
当某个底层信号定义需要变更时(例如,车速信号源从VCU改为ADAS),AI能瞬间分析出所有受影响的上层功能(如速度提醒、自动驾驶模式、音乐音量随速调节等)、相关的UI界面和测试用例,并生成一份详细的《变更影响分析报告》,让变更决策有据可依。· A/B测试与优化: 在开发阶段,可以将不同的UI设计稿投入A/B测试平台,AI自动分析用户交互数据(点击率、操作路径、完成时间),并量化地告诉您哪个设计版本更能高效地满足用户需求,为需求优化提供铁证。· 预测性需求: AI基于用户习惯和场景,预测并生成新的需求。
2025-10-29 21:32:57
327
原创 AI 赋能座舱软件开发
自动分类与打标: AI可根据内容自动将需求分类为功能需求(如“音乐App支持后台播放”)、性能需求(如“App冷启动时间<500ms”)、安全需求(如“遵守Android Automotive安全规范”) 等,并与Aspice中的需求类型关联。例如,模拟在“导航过程中来电,接听后音乐App降低音量,通话结束后导航App恢复播报”这一系列跨应用交互。· 测试用例优化: AI可以分析单元测试的执行历史和代码变更,推荐需要优先运行的测试用例,或者识别出冗余的、几乎从不失败的测试,优化测试套件的执行时间。
2025-10-29 21:27:15
282
原创 车联网车云架构_信息分享01
这就是为什么云不能主动连接车的根本原因: 云服务器只知道一个公网IP(运营商的NAT网关地址),但这个地址背后可能对应着成千上万辆汽车,云服务器无法知道具体要找哪一辆,也无法穿透运营商的NAT和防火墙建立连接。2. DNS查询: 当车辆上电启动网络后,它要做的第一件事就是向公共DNS服务器(如 8.8.8.8 或 114.114.114.114)或运营商指定的DNS服务器发起查询,请求解析这些域名的IP地址。2. 运营商的网络网关会给它分配一个临时的、私有的内网IP地址(比如 10.xx.xx.xx)。
2025-10-24 16:25:18
483
原创 车联网车云架构_信息分享
随着5G网络的发展,特别是5G SA(独立组网)和网络切片技术的应用,理论上可以给车辆分配固定的、公网的IP地址,使得云端直接寻址成为可能。1. 解决寻址问题: 车辆主动“报到”,云端就知道“哦,这辆车在线了,它的连接通道在这里”,之后就可以通过这个通道下发指令和数据。· 防火墙: 移动运营商和车辆自身的通信模组都会有严格的防火墙策略,会阻止所有来自外部的、未经请求的连接尝试,以确保安全。· 车队管理平台: 对于商用车或租赁车辆,会有专门的车队管理云平台,监控车辆位置、油耗、驾驶行为等,以优化运营效率。
2025-10-24 16:20:18
532
原创 用AI搭建工作流替代需求工程师工作
通过这套工具链,您可以逐步将需求工程师从繁琐的文档工作和重复性分析中解放出来,让他们专注于更高价值的业务分析、需求谈判和创新性思考。def from_user_feedback(self): # 用户反馈渠道整合。def from_meetings(self): # 会议录音转文字+需求提取。def from_documents(self): # 文档扫描识别需求。def from_emails(self): # 解析邮件自动提取需求。- 用户故事:作为[角色],我想要[目标],以便[价值]
2025-10-18 15:54:30
685
原创 如何用AI替换掉产品经理?
3. 需求规约与文档化 - 编写结构化的软件需求规格说明 - 定义精确的验收标准 - AI:这是AI的强项。1. 战略决策者与“灵魂”注入者:AI可以提供数据和建议,但最终“为什么要做这个产品”、“产品的愿景和价值观是什么”、“如何在多个都不错的方案中做出符合长期利益的抉择”,这需要人类的战略眼光和价值观判断。4. 需求跟踪与管理 - 手动创建需求与设计、测试用例的追溯矩阵 - 管理需求变更的影响 - AI:自动建立和维护需求追溯链,当需求变更时,自动分析影响范围,提示哪些设计、代码和测试用例需要修改。
2025-10-18 07:35:05
405
原创 Gen-AI 生成式AI 和AGI分别是什么?
创建逼真的仿真环境: 根据真实世界的扫描数据或简单的文本描述,快速生成高保真的虚拟测试环境(城市、乡村、高速公路),加速虚拟验证(MiL, SiL, HiL)。· 合成极端驾驶场景: 生成在真实世界中难以遇到或危险的场景数据,如突然闯入的行人、极端天气(暴雨、大雾)、复杂的多车交互等,用于训练和测试自动驾驶系统。· 大型语言模型(LLMs): 如GPT系列,基于Transformer架构,通过预测文本中的下一个词,学会了语法、知识、逻辑,从而能够生成连贯的文本、代码等。)这需要明确的法律和伦理框架。
2025-10-12 11:54:17
547
原创 What are LLM Agents?
LLM Agents(大模型智能体)是以大型语言模型(LLM)为核心大脑,具备环境感知、自主决策、工具使用与持续行动能力的智能实体。其核心价值在于突破传统 AI “被动响应” 的局限,实现 “主动规划 - 执行 - 迭代” 的闭环能力,可类比为 “模拟人类行为的数字代理”。短期记忆(会话上下文)+ 长期记忆(用户数据 / 业务知识)。API 调用、插件(ChatPDF/Midjourney)。二、核心技术架构:四大支柱与三大模块。三、关键实现方法论与框架。问答代理、数据分析代理。
2025-10-12 11:13:51
807
原创 LLM和VLM分别是什么?区别和应用简述
LLM应用:利用其强大的逻辑和生成能力,自动生成海量、复杂、罕见的驾驶场景描述(“ corner cases ”),用于仿真测试。总结:LLM是产业的“语言大脑”,而VLM是为这个大脑装上了“眼睛”。它们的结合,正推动汽车和制造业从“自动化”向“智能化”和“自主化”跃迁,最终目标是构建一个能自我感知、自我决策、自我优化的“活”的生产系统。3. 具身智能工厂:VLM将成为未来“灯塔工厂”的“视觉中枢”,连接所有机器人、AGV和传感器,形成一个能够感知、理解和自主决策的生产系统。· 关键连接:一个投影器。
2025-10-06 16:18:50
655
原创 如何处理动画开发和产品文言频繁变更?使用RIVE隔离方案
"show_text_1" -> showTextAnimation("动态文字1")"show_text_2" -> showTextAnimation("动态文字2")// 这里需要根据RIVE SDK的具体API来动态更新文字。"welcome_text" to "欢迎","button_text" to "开始"// 根据RIVE动画进度控制文字动画。// 使用RIVE状态机触发文字动画。// Android端执行文字动画。// 同步RIVE动画时间轴。// 自定义文字动画绘制。
2025-10-06 16:04:26
452
原创 ISO26262-功能安全开发软件需求的verification criteria and verification method
所以,“功能安全开发中需求的验证方法” 指的是一套系统化的技术和活动,用于检查和评估在 FuSa 过程中定义的各种安全需求(尤其是技术安全需求和软件安全需求)的质量,以确保它们为后续的设计、实现和测试奠定了坚实的基础。· 需求:在 FuSa 语境下,这不仅仅是“用户想要什么”,而是包含了从顶层《安全目标》派生出的《技术安全需求》、《硬件安全需求》和《软件安全需求》等一套层级化的、精确的需求体系。· 应用场景:验证人机交互相关的安全需求(如警告信息的显示时长、音量),或验证复杂的算法需求。
2025-10-01 12:19:27
825
原创 AI Agent和人工智能的关系及在智能制造领域的应用
这辆车能通过传感器(摄像头、雷达)感知环境(道路、车辆),通过决策系统(AI模型)决定如何行驶,并通过执行器(方向盘、油门、刹车)来执行动作,最终目标是将你安全送达目的地。采购Agent、库存Agent、物流Agent、销售预测Agent相互协作,共同应对市场需求波动、供应商延迟、运输中断等不确定性,实现全局成本最优和韧性最强。· 如何工作:通过分析传感器数据(温度、振动、电流),Agent能预测设备何时可能发生故障,并主动生成维修工单、订购备件,甚至指挥维护机器人进行初步检查。这是实现复杂决策的关键。
2025-10-01 12:07:00
370
【计算机视觉与人机交互】基于视觉语言模型的汽车用户界面理解框架:利用合成数据微调实现UI视觉定位与评估
2025-11-02
DriveVLM The Convergence of Autonomous Driving and Large VLM
2025-10-12
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅