AcWing 339 .圆形数字

大型补档计划

题目链接

\(f[i][j]\) 表示二进制下,数字有 \(i\) 位, \(0\) 的个数 - \(1\) 的个数 \(=\) \(j\) 的方案数

\(f[0][0] = 1;\)

填一个 \(0\)\(f[i + 1][j + 1] += f[i][j]\)
填一个 \(1\)\(f[i + 1][j - 1] += f[i][j]\)

考虑到负下标越界,需要加偏移量

然后数位 dp 的细节蛮多的,比如第一位如果选 0 的话得特判,因为dp包括了前导0在内加入计算,所以得额外处理一个 \(g[i]\) 表示一共 $ <= i$ 位,符合条件的个数。

#include <cstdio>
#include <iostream>
using namespace std;
const int N = 31, D = 30;
int a, b, d[N];
int f[N][N << 1], g[N];
void init() {
	f[0][D] = 1;
	for (int i = 0; i + 1 < N; i++) {
		for (int j = 0; j <= D * 2; j++) {
			if (!f[i][j]) continue;
			if (j < D * 2) f[i + 1][j + 1] += f[i][j];
			if (j) f[i + 1][j - 1] += f[i][j];
		}
	}

	g[0] = g[1] = 1;
	for (int i = 2; i < N; i++) {
		g[i] = g[i - 1];
		for (int j = D + 1; j <= D * 2; j++) g[i] += f[i - 1][j];
	}
}

int solve(int x) {
    if (x == 0) return 1;
    int n;
    for (int i = N - 1; ~i; i--)
        if (x >> i & 1) { n = i; break; }
    for (int i = 0; i <= n; i++) d[i] = x >> i & 1;
    int p = 0, res = 0;
    // p:目前 0 的个数 - 1 的个数
    for (int i = n; ~i; i--) {
        // 有 i + 1 位
        if (d[i]) {
        	if (i == n) res += g[i];
            else for (int j = D - (p + 1); j <= D * 2; j++) res += f[i][j];
            p--;
        } else p++;
        if (i == 0 && p >= 0) res++;
    }
    return res;
}
int main() {
	init();
	scanf("%d%d", &a, &b);
	printf("%d\n", solve(b) - solve(a - 1));
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值