Minimum Spanning Tree
1 简介
假设有n个节点,m条带非负权值的无向路径,我们想要在它们之间建立一张连接网络,使得任意两个节点之间都存在一条路径,且总权值最小。
这样的问题被称为最小生成树,下面证明当花费最小时,该网络为一棵树:
根据定义,该网络是连通的。假设网络G中存在一个环,环中包含a,b。因为G中的路径是无向的,且a,b在一个环中,那么a-b有两条路径,删去其中一条路径的一条边e’,得到G‘。G’同样是连通的,且cost(G‘)=cost(G)-cost(e’) <= cost(G)。这与假设矛盾,因此最小生成树是无环的,所以它是一个树。
一般而言,有两种解决最小生成树的方法,分别是kruskal和prim。
2 Kruskal
每次从两棵树之间的边中选择长度最短的。
设G={V,E}
A={}
sort edges by weight
for edge ei=(vi,ui) in E:
if Find-set(vi) != Find-set(ui):
A=AU{ei}
set(vi)=set(ui)
对于Find-set函数,一般使用并查集的方式。
本文介绍了最小生成树的概念,探讨了在带非负权值的无向图中寻找总权值最小的连通子图的问题。通过证明最小生成树的无环性质,文章详细阐述了Kruskal算法和Prim算法,特别是Kruskal算法中使用并查集处理边的选择策略,并简要说明了Prim算法的思路。
最低0.47元/天 解锁文章
1280

被折叠的 条评论
为什么被折叠?



