贪心算法-5 Minimum Spanning Tree

本文介绍了最小生成树的概念,探讨了在带非负权值的无向图中寻找总权值最小的连通子图的问题。通过证明最小生成树的无环性质,文章详细阐述了Kruskal算法和Prim算法,特别是Kruskal算法中使用并查集处理边的选择策略,并简要说明了Prim算法的思路。
摘要由CSDN通过智能技术生成

Minimum Spanning Tree

1 简介

假设有n个节点,m条带非负权值的无向路径,我们想要在它们之间建立一张连接网络,使得任意两个节点之间都存在一条路径,且总权值最小。

这样的问题被称为最小生成树,下面证明当花费最小时,该网络为一棵树:

根据定义,该网络是连通的。假设网络G中存在一个环,环中包含a,b。因为G中的路径是无向的,且a,b在一个环中,那么a-b有两条路径,删去其中一条路径的一条边e’,得到G‘。G’同样是连通的,且cost(G‘)=cost(G)-cost(e’) <= cost(G)。这与假设矛盾,因此最小生成树是无环的,所以它是一个树。

一般而言,有两种解决最小生成树的方法,分别是kruskalprim

2 Kruskal

每次从两棵树之间的边中选择长度最短的。

设G={V,E}

A={}
sort edges by weight
for edge ei=(vi,ui) in E:
	if Find-set(vi) != Find-set(ui):
		A=AU{ei}
		set(vi)=set(ui)

对于Find-set函数,一般使用并查集的方式。

并查集<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值