【洛谷】P1567 统计天数 题解

【洛谷】P1567 统计天数 题解

原题地址:https://www.luogu.org/problemnew/show/P1567

题目背景

统计天数

题目描述

炎热的夏日,KC 非常的不爽。他宁可忍受北极的寒冷,也不愿忍受厦门的夏天。最近,他开始研究天气的变化。他希望用研究的结果预测未来的天气。

经历千辛万苦,他收集了连续 N(1 ≤ N ≤ 106)的最高气温数据。

现在,他想知道最高气温一直上升的最长连续天数。

输入输出格式

输入格式:

第 1 行:一个整数 N 。(1 ≤ N ≤ 106)

第 2 行:N个空格隔开的整数,表示连续 N 天的最高气温。(0 ≤ 最高气温 ≤109)

输出格式:

1 行:一个整数,表示最高气温一直上升的最长连续天数。

输入输出样例

输入样例#1:

10
1 2 3 2 4 5 6 8 5 9

输出样例#1:

5

说明

时空限制: 1000ms/128MB

思路:
这道题需要用到数组a、数组b分别表示连续 N 天的最高气温、最高气温一直上升的连续天数,用count进行计算最高气温一直上升的连续天数。然后需要比较前后两个数,最后找出数组b中的count最大值max并输出。

注意:
1、数据很大
2、 count赋初值1,因为天数最小为1天

代码如下:

#include <iostream>
#include <cstdio>
using namespace std;
const int N=10000000;	//注意数据要大点,不然数据会溢出 
int main() 
{
	int n,count=1,a[N],b[N];	//长度至少为1,故count赋初值为1;数组b[N]用来存放所有count的值 
	scanf("%d",&n);
	for(int i=0;i<n;i++)
		scanf("%d",&a[i]);
	for(int i=0;i<n;i++)
	{
		if(a[i+1]>a[i])	//如果后面的数比前面的大,count加1,并存入数组b 
		{
			count++;
			b[i]=count;	
		}
		else	//如果后面的数比前面的小,则count值为1,并存入数组b 
		{
			count=1;
			b[i]=count;
		}
	}
	int max=b[0];	//将数组第一个元素赋给最大值max 
	for(int i=0;i<n;i++)	//寻找最大的count 
	{
		if(max<b[i])
			max=b[i];
	}
	printf("%d\n",max);
	return 0;
}
  • 5
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
思路1(洛谷题解) 设n维球体为α,其半径为r(注意,这是一个设而不求。),其球心X的坐标为(x_1,x_2,…,x_n )。∀A_1,A_2,…,A_(n+1)∈α,点A_i (1≤i≤n+1)坐标为(a_((i,1) ),a_((i,2) ),…,a_((i,n) ) )。由n维球体的定义,得方程组: {█((a_((1,1) )-x_1 )^2+(a_((1,2) )-x_2 )^2+⋯+(a_((1,n) )-x_n )^2=r^2@(a_((2,1) )-x_1 )^2+(a_((2,2) )-x_2 )^2+⋯+(a_((2,n) )-x_n )^2=r^2@⋮@(a_((n+1,1) )-x_1 )^2+(a_((n+1,2) )-x_2 )^2+⋯+(a_((n+1,n) )-x_n )^2=r^2 )┤. 从上往下,将第1个方程与第2个方程相减,将第2个方程与第3个方程相减,……,将第n个方程与第(n+1)个方程相减,得: {█(∑_(i=1)^n▒2(a_((1,i) )-a_((2,i) ) ) x_i=∑_(i=1)^n▒(a_((1,i) )+a_((2,i) ) )(a_((1,i) )-a_((2,i) ) ) @∑_(i=1)^n▒2(a_((2,i) )-a_((3,i) ) ) x_i=∑_(i=1)^n▒(a_((2,i) )+a_((3,i) ) )(a_((2,i) )-a_((3,i) ) ) @⋮@∑_(i=1)^n▒2(a_((n,i) )-a_((n+1,i) ) ) x_i=∑_(i=1)^n▒(a_((n,i) )+a_((n+1,i) ) )(a_((n,i) )-a_((n,i) ) ) )┤. 这是一个线性方程组,其增广矩阵为[■(2(a_((1,1) )-a_((2,1) ) )&⋯&2(a_((1,n) )-a_((2,n) ) )&∑_(i=1)^n▒(a_((1,i) )+a_((2,i) ) )(a_((1,i) )-a_((2,i) ) ) @⋮&⋱&⋮&⋮@2(a_((n,1) )-a_((n+1,1) ) )&⋯&2(a_((n,n) )-a_((n+1,n) ) )&∑_(i=1)^n▒(a_((n,i) )+a_((n+1,i) ) )(a_((n,i) )-a_((n+1,i) ) ) )],可用列主元高斯消元法求得其解。 思路2 n(n∈N_+ )维空间中到两个互不重合的点的距离相等的点的集合叫做这两个点的垂直平分图形。 求n维空间中两点的垂直平分图形的方程的基本思路: 设点A坐标为(a_1,a_2,…,a_n ),点B的坐标为(b_1,b_2,…,b_n ),A≠B,它们的垂直平分图形为β。取∀X∈β,其坐标为(x_1,x_2,…,x_n )。 由垂直平分图形的意义,得: |AX|=|BX|⇔|AX|^2=|BX|^2⇔∑_(i=1)^n▒(a_i-x_i )^2 =∑_(i=1)^n▒(b_i-x_i )^2 ⇔(∑_(i=1)^n▒〖a_i〗^2 )-2(∑_(i=1)^n▒〖a_i x_i 〗)+(∑_(i=1)^n▒〖x_i〗^2 )=(∑_(i=1)^n▒〖b_i〗^2 )-2(∑_(i=1)^n▒〖b_i x_i 〗)+(∑_(i=1)^n▒〖x_i〗^2 )⇔∑_(i=1)^n▒〖2(a_i-b_i ) x_i 〗=∑_(i=1)^n▒(a_i+b_i )(a_i-b_i ) . 最后出来的这个等式就是垂直平分图形的方程。 回到题目中,对于∀A_1,A_2,…,A_(n+1)∈α,取A_1,A_2为一对,A_2,A_3为一对,……,A_n,A_(n+1)为一对代入垂直平分图形的方程中,惊奇地发现得到的线性方程组与思路1中相同,接下来的解法也相同。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值