数据结构-5(树和二叉树)

树和二叉树

1.n(n≥0)个结点的有限集合;当n=0时,称为空树。
任意一棵非空树满足以下条件:
⑴ 有且仅有一个特定的称为根的结点;
⑵ 当n>1时,除根结点之外的其余结点被分成m(m>0)个互不相交的有限集合T1,T2,… ,Tm,其中每个集合又是一棵树,并称为这个根结点的子树。

树的定义是采用递归方法

有关树的一些定义

结点的度
结点所拥有的子树的个数。
树的度
树中各结点度的最大值。
叶子结点
度为0的结点,也称为终端结点。
分支结点
度不为0的结点,也称为非终端结点。
孩子、双亲
树中某结点子树的根结点称为这个结点的孩子结点,这个结点称为它孩子结点的双亲结点;
兄弟
具有同一个双亲的孩子结点互称为兄弟。
路径
如果树的结点序列n1, n2, …, nk有如下关系:结点ni是ni+1的双亲(1<=i<k),则把n1, n2, …, nk称为一条由n1至nk的路径;路径上经过的边的个数称为路径长度。
祖先、子孙
在树中,如果有一条路径从结点x到结点y,那么x就称为y的祖先,而y称为x的子孙。
结点所在层数:
根结点的层数为1;对其余任何结点,若某结点在第k层,则其孩子结点在第k+1层。
树的深度
树中所有结点的最大层数,也称高度。
层序编号
将树中结点按照从上层到下层、同层从左到右的次序依次给他们编以从1开始的连续自然数。
有序树、无序树
如果一棵树中结点的各子树从左到右是有次序的,称这棵树为有序树;反之,称为无序树。
森林
m (m≥0)棵互不相交的树的集合。
同构
对两棵树,若通过对结点适当地重命名,就可以使这两棵树完全相等(结点对应相等,结点对应关系也相等),则称这两棵树同构。

树的遍历:

从根结点出发,按照某种次序访问树中所有结点,使得每个结点被访问一次且仅被访问一次。
遍历的实质: 树结构(非线性结构)→线性结构。
树通常有前序(根)遍历、后序(根)遍历和层序(次)遍历三种方式。
前序遍历
树的前序遍历操作定义为:
若树为空,则空操作返回;否则
⑴ 访问根结点;
⑵ 按照从左到右的顺序前序遍历根结点的每一棵子树。
后序遍历
树的后序遍历操作定义为:
若树为空,则空操作返回;否则
⑴ 按照从左到右的顺序后序遍历根结点的每一棵子树;
⑵ 访问根结点。
层序遍历
树的层序遍历操作定义为:
从树的第一层(即根结点)开始,自上而下逐层遍历,在同一层中,按从左到右的顺序对结点逐个访问。

树的存储结构:

1.双亲表示法:
用一维数组来存储树的各个结点(一般按层序存储),
数组中的一个元素对应树中的一个结点,
每个结点记录两类信息:结点的数据信息以及该结点的双亲在数组中的下标。
data:存储树中结点的数据信息
parent:存储该结点的双亲在数组中的下标

template <class T>
struct PNode{
     T data;          //数据域
     int parent;   //指针域,双亲在数组中的下标
} ;

2.孩子表示法-多重链表表示法:
data:数据域,存放该结点的数据信息;
degree:度域,存放该结点的度;
child1~childd:指针域,指向该结点的孩子。
基本思想:
把每个结点的孩子排列起来,看成是一个线性表,且以单链表存储,则n个结点共有 n 个孩子链表。

struct CTNode
{   
     int child;
     CTNode *next;
};
template <class T>
struct CBNode
{     
    T data;
    CTNode *firstchild;  
};

3.孩子兄弟表示法:
data:数据域,存储该结点的数据信息;
firstchild:指针域,指向该结点第一个孩子;
rightsib:指针域,指向该结点的右兄弟结点。

template   <class T>
struct TNode{
     T data;
     TNode <T> *firstchild, *rightsib;
};

二叉树

定义:

二叉树是n(n≥0)个结点的有限集合,该集合或者为空集(称为空二叉树),或者由一个根结点和两棵互不相交的、分别称为根结点的左子树和右子树的二叉树组成。

特点:

⑴ 每个结点最多有两棵子树;
⑵ 二叉树是有序的,其次序不能任意颠倒。

基本形态

特殊的二叉树:

斜树
1 .所有结点都只有左子树的二叉树称为左斜树;
2 .所有结点都只有右子树的二叉树称为右斜树;
3.左斜树和右斜树统称为斜树。
斜树的特点:
1.在斜树中,每一层只有一个结点;
2.斜树的结点个数与其深度相同。
满二叉树
在一棵二叉树中,如果所有分支结点都存在左子树和右子树,并且所有叶子都在同一层上。
特点:
1.叶子只能出现在最下一层;
2.只有度为0和度为2的结点。
完全二叉树
对一棵具有n个结点的二叉树按层序编号,如果编号为i(1≤i≤n)的结点与同样深度的满二叉树中编号为i的结点在二叉树中的位置完全相同。(在满二叉树中,从最后一个结点开始,连续去掉任意个结点,即是一棵完全二叉树。)
特点:
1.叶子结点只能出现在最下两层,且最下层的叶子结点都集中在二叉树的左部;
2. 完全二叉树中如果有度为1的结点,只可能有一个,且该结点只有左孩子。
3. 深度为k的完全二叉树在k-1层上一定是满二叉树。
二叉树的性质:
性质1:二叉树的第i层上最多有2i-1个结点(i≥1)。
性质2:一棵深度为k的二叉树中,最多有2k-1个结点,最少有k个结点。
性质3:在一棵二叉树中,如果叶子结点数为n0,度为2的结点数为n2,则有: n0=n2+1。
性质4:具有n个结点的完全二叉树的深度为 log2n +1。
性质5:对一棵具有n个结点的完全二叉树中从1开始按层序编号,则对于任意的序号为i(1≤i≤n)的结点(简称为结点i),有:
(1)如果i>1,
则结点i的双亲结点的序号为 i/2;如果i=1,
则结点i是根结点,无双亲结点。
(2)如果2i≤n,
则结点i的左孩子的序号为2i;
如果2i>n,则结点i无左孩子。
(3)如果2i+1≤n,
则结点i的右孩子的序号为2i+1;如果2i+1>n,则结点 i无右孩子。

二叉树的存储结构及实现

顺序存储结构(一般仅存储完全二叉树)
二叉树的顺序存储结构就是用一维数组存储二叉树中的结点,并且结点的存储位置(下标)应能体现结点之间的逻辑关系——父子关系。
二叉链表
基本思想:令二叉树的每个结点对应一个链表结点,链表结点除了存放与二叉树结点有关的数据信息外,还要设置指示左右孩子的指针。
结点结构:
data:数据域,存放该结点的数据信息;
lchild:左指针域,存放指向左孩子的指针;
rchild:右指针域,存放指向右孩子的指针。

template <class T>
struct BiNode
{
    T data;
    BiNode<T> *lchild, *rchild;
};

前序遍历
递归算法:

template   <class T>
void   BiTree::PreOrder(BiNode<T> *root) 
{
        if (root ==NULL)  return;     
        else {
            cout<<root->data;         
            PreOrder(           );    
            PreOrder(           );    
        }
 }

非递归算法:

template <class T>
void BiTree::PreOrder(BiNode<T> *root) {
  SeqStack<BiNode<T> *>  s;
     while (root!=NULL | | !s.empty())     {
         while (root!= NULL)         {
             cout<<root->data;
             s.push(root);
             root=root->lchild;  
         }
         if (!s.empty()) { 
             root=s.pop();
             root=root->rchild;  
         }
     }
}

中序遍历
递归算法:

template <class T>
void BiTree::InOrder (BiNode<T> *root)
{
         if (root==NULL) return;     
         else {
               InOrder(root->lchild); 
               cout<<root->data; 
               InOrder(root->rchild);
         }
}

非递归算法:

template <class T>
void BiTree::InOrderwithoutD (BiNode<T> *root)
	 {
     	stack< BiNode<T> * > aStack;
     	}
     	while(!aStack.empty()||root) {
     	while(root){
  aStack.push(root);
  root=root->lchild; 	 
   }
  	  if(!aStack.empty()){
		      root=aStack.top();				
		      aStack.pop(); 
                 cout<<root->data;
                 root=root->rchild; 
	   }
  }
} 

后序遍历
递归算法:

template <class T>
void BiTree::PostOrder(BiNode<T> *root)
{ 
    if (root==NULL) return; 
    else {
         PostOrder(root->lchild); 
         PostOrder(root->rchild); 
         cout<<root->data;          
    }
}

非递归算法:

#include <stack>
Using namespace std;
template<class T>
void BiTree<T>::PostOrderWithoutRecusion(BiTreeNode<T>* root){
	StackElement<T> element;
	stack<StackElement<T > > aStack;//栈申明
	BiTreeNode<T>* pointer;
	if(root==NULL)
		return;//空树即返回
			else    pointer=root;				
	while(true){
	  while(pointer!=NULL){//进入左子树
		element.pointer=pointer;
		element.tag=Left; //沿左子树方向向下周游
		aStack.push(element);
		pointer=pointer->lchild; 	
		}
   		element=aStack.pop();
            pointer=element.pointer; 
            while(element.tag==Right){
        cout<<pointer->data;
        if(aStack.empty())  return;
	    else{
	       element=aStack.pop();
		     pointer=element.pointer;
	  	 }//end else
        } //endwhile
        element.tag=Right; 
    aStack.push(element);
    pointer=pointer->rchild(); 
     }//end while
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值