# TensorFlow基础8-实现单层神经网络

16 篇文章 3 订阅

## 二，实现单层神经网络

导入库


#单层神经网络
import tensorflow as tf
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
#下载鸢尾花数据集
train_path=tf.keras.utils.get_file(TRAIN_URL.split('/')[-1],TRAIN_URL)
test_path=tf.keras.utils.get_file(TRAIN_URL.split('/')[-1],TEST_URL)
#读取数据集
#将数据集变为np数组
iris_train=np.array(df_iris_train)
iris_test=np.array(df_iris_test)
#取出数据集前四列特征以及第五列标签
x_train=iris_train[:,0:4]
y_train=iris_train[:,4]
x_test=iris_test[:,0:4]
y_test=iris_test[:,4]
#归一化中心化
x_train=x_train-np.mean(x_train,axis=0)
x_test=x_test-np.mean(x_test,axis=0)
#转换数据类型并标签独热编码
X_train=tf.cast(x_train,tf.float32)
Y_train=tf.one_hot(tf.constant(y_train,dtype=tf.int32),3)
X_test=tf.cast(x_test,tf.float32)
Y_test=tf.one_hot(tf.constant(y_test,dtype=tf.int32),3)
#设置超参数和显示间隔
learn_rate=0.5
iter=50
display_step=10
#设置模型参数初始值
np.random.seed(612)
W=tf.Variable(np.random.randn(4,3),dtype=tf.float32)
B=tf.Variable(np.zeros([3]),dtype=tf.float32)
#训练模型
acc_train=[]              #训练准确率
acc_test=[]
cce_train=[]              #训练交叉熵
cce_test=[]
for i in range(0,iter+1):
PRED_train=tf.nn.softmax(tf.matmul(X_train,W)+B)
Loss_train=tf.reduce_mean(tf.keras.losses.categorical_crossentropy(y_true=Y_train,y_pred=PRED_train))
PRED_test=tf.nn.softmax(tf.matmul(X_test,W)+B)
Loss_test=tf.reduce_mean(tf.keras.losses.categorical_crossentropy(y_true=Y_test,y_pred=PRED_test))
Accuracy_train=tf.reduce_mean(tf.cast(tf.equal(tf.argmax(PRED_train.numpy(),axis=1),y_train),tf.float32))
Accuracy_test=tf.reduce_mean(tf.cast(tf.equal(tf.argmax(PRED_test.numpy(),axis=1),y_test),tf.float32))
acc_train.append(Accuracy_train)
acc_test.append(Accuracy_test)
cce_train.append(Loss_train)
cce_test.append(Loss_test)
if i % display_step == 0:
print("i:%i, TrainAcc:%f,TrainLoss:%f, TestAcc:%f,TestLoss:%f"%(i,Accuracy_train,Loss_train,Accuracy_test,Loss_test))
#损失函数和准确率可视化
plt.figure(figsize=(10,3))\

plt.subplot(121)
plt.plot(cce_train,color="blue",label="train")
plt.plot(cce_test,color="red",label="test")
plt.xlabel("Iteration")
plt.ylabel("Loss")
plt.legend()

plt.subplot(122)
plt.plot(acc_train,color="blue",label="train")
plt.plot(acc_test,color="red",label="test")
plt.xlabel("Iteration")
plt.ylabel("Accuracy")
plt.legend()

plt.show()



• 0
点赞
• 0
收藏
觉得还不错? 一键收藏
• 打赏
• 0
评论
12-21 935
05-30 3353
08-13 1557
10-23 725
12-30 1万+
03-05 485
07-08 467

### “相关推荐”对你有帮助么？

• 非常没帮助
• 没帮助
• 一般
• 有帮助
• 非常有帮助

¥1 ¥2 ¥4 ¥6 ¥10 ¥20

1.余额是钱包充值的虚拟货币，按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载，可以购买VIP、付费专栏及课程。