Anaconda3 环境下安装Open3D(自学笔记)

介绍

Open3D是一个开源库,支持快速开发处理3D数据的软件。

Open3D的核心功能包括:

  1. 3D数据结构;
  2. 3D数据处理算法;
  3. 场景重建;
  4. 表面对齐;
  5. 3D可视化;
  6. 基于物理的渲染(PBR);
  7. 支持PyTorch、TensorFlow;
  8. 支持GPU加速处理;
  9. 在C++和python都可以使用;

更多的使用信息可以查看http://www.open3d.org/docs
构建的pip和conda包支持Ubuntu 18.04+、macOS 10.15+和Windows 10(64位)及Python 3.6-3.9。

Anaconda3 安装

安装方法请参照https://blog.csdn.net/weixin_48697962/article/details/125941609

open3d安装

  1. Win+R,打开运行,输入 cmd
    在这里插入图片描述

  2. 按快捷键 ctrl + shift + enter 打开管理员模式的cmd
    在这里插入图片描述

  3. 通过conda create -name 环境名称 python=3.7 创建虚拟环境(python版本根据项目需求来选,官方推荐3.6-3.9)
    在这里插入图片描述
    在这里插入图片描述

  4. 输入指令conda activate test 进入虚拟环境
    在这里插入图片描述

  5. 接着输入conda install -c open3d-admin open3d安装open3d
    在这里插入图片描述

  6. 接着在命令行输入python,进入编译环境输入import open3d ,如图所示安装成功
    在这里插入图片描述

  • 3
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
【资源说明】 1、该资源内项目代码都是经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载使用,也适合小白学习进阶,当然也可作为毕设项目、课程设计、作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能。 环境部署 (1)我的环境配置 ``` 操作系统:Ubuntu20.04 IDE:vscode Python: 3.6.13 PyTorch: 1.10.2+cu113 CUDA:113 GPU:NVIDIA GeForce RTX 3090 ``` (2)完整的安装脚本 # Linux ​ 这里便是一个完整安装 MMSegmentation 的脚本,使用 conda 并链接了数据集的路径(以您的数据集路径为 $DATA_ROOT 来安装)。 ```shell conda create -n open-mmlab python=3.10 -y conda activate open-mmlab conda install pytorch=1.11.0 torchvision cudatoolkit=11.3 -c pytorch pip install mmcv-full -f https://download.openmmlab.com/mmcv/dist/cu113/torch1.11.0/index.html csdn下载解压资源,命名为mmsegmentation cd mmsegmentation pip install -e . # 或者 "python setup.py develop" mkdir data ln -s $DATA_ROOT data ``` # Windows (有风险) ​ 这里便是一个完整安装 MMSegmentation 的脚本,使用 conda 并链接了数据集的路径(以您的数据集路径为 %DATA_ROOT% 来安装)。 注意:它必须是一个绝对路径。 ```shell conda create -n open-mmlab python=3.10 -y conda activate open-mmlab conda install pytorch=1.11.0 torchvision cudatoolkit=11.3 -c pytorch set PATH=full\path\to\your\cpp\compiler;%PATH% pip install mmcv csdn下载解压资源,命名为mmsegmentation cd mmsegmentation pip install -e . # 或者 "python setup.py develop" mklink /D data %DATA_ROOT% ``` ## 二.数据集收集以及标注 (1)数据分析 ​ 使用官方提供的视频,每12帧提取1帧,总共提取583张图片,剔除后84张无车道线图片,剩余499张数据样本。 ![](https://s2.loli.net/2022/05/21/PcU5Y1tZBa8FLMs.png) ​ 需要标注的数据区域为图片下1/3区域内的车道线。过远区域车道线不清晰,不利于模型的训练。只标注车行进的主车道线。 (2)数据标注 ​ 数据标注我们选择使用labelme。其优势在于我们可以在任意地方使用该 工具。此外,它也可以帮助我们标注图像,不需要在电脑安装或复制大型数据集。 标注方式:我们选择用多边形(Polygons)进行车道线的标注。 ![](https://s2.loli.net/2022/05/21/bgeJK6hQY2R1XjW.png) (3)数据增强 ​ 在深度学习,数据增强可以在样本数量不足或者样本质量不够好的情况下,提高样本质量,增加训练的数据量,提高模型的泛化能力,增加噪声数据,提升模型的鲁棒性。 ​ 我们对标注好的车道线数据进行数据增强,数据增强的同时保留原有标注数据。对每张图片进行4次数据增强,包含改变亮度、加噪声、加随机点、水平翻转4种形式的数据增强,不同形式的数据增强会随机叠加。 ​ 修改DataAugmentforLabelMe.py文件里的数据集路径,运行后即可得到增强的数据集。 ![](https://s2.loli.net/2022/05/21/iIW3VdtZu2fK9w1.png) (4)数据集 ​ 数据集格式选择voc格式,将labelme标定好的json数据转voc格式。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值