在 Node-RED 中引入 ECharts 实现数据可视化

本文介绍了如何在Node-RED中利用ECharts进行数据可视化,包括引入本地ECharts库和直接使用CDN的方式,以及如何在Node-RED项目中配置和展示图表。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Node-RED 提供了强大的可视化工具,而通过引入 ECharts 图表库,您可以更直观地呈现和分析数据。在这篇博客中,我们将介绍两种在 Node-RED 中实现数据可视化的方法:一种是引入本地 ECharts 库,另一种是直接使用 CDN(Content Delivery Network)。

方法一:引入本地 ECharts 库

首先,在 Node-RED 中引入 ECharts 库。您可以通过以下步骤:

  1. 创建静态文件夹

    在 Node-RED 项目目录下创建一个静态文件夹,例如 static

  2. 下载 ECharts 库

    下载 ECharts 库的 JavaScript 文件,可从 ECharts 官网 获取。将下载的文件放置在刚创建的静态文件夹中。

  Node-RED Project
  |-- static
  |   |-- echarts.min.js
  |-- ...

注意: 静态文件夹的位置可以通过 Node-RED 的设置文件(settings.js)中的 httpStatic 属性指定。在 Docker 中映射文件夹到本地时,确保路径是容器内部的路径。

 module.exports = {
     httpStatic: '/data/static',
     // 其他配置项...
 }

这样,Node-RED 将从容器内部的 /data/static 文件夹提供静态文件,并且可以通过 Node-RED 的 URL 访问这些文件。

  1. 在 Node-RED 中使用 ECharts

    1. 准备数据

      确保 Node-RED 工作流中有一个节点生成用于图表的数据。这可以是来自传感器、API 请求或其他来源的实时数据。

    2. 创建 ECharts 页面

      在 Node-RED 项目中,添加一个新的 HTML 页面节点。编写 HTML 和 JavaScript 代码以呈现 ECharts 图表。
      在这里插入图片描述

<!-- 引入 ECharts 文件 -->
<script src="/echarts.min.js"></script>
<!-- 为 ECharts 准备一个定义了宽高的 DOM -->
<div id="main" style="width: 600px;height:400px;"></div>
<script>
    // 基于准备好的dom,初始化echarts实例
      var myChart = echarts.init(document.getElementById('main'));

      // 指定图表的配置项和数据
      var option = {
        title: {
          text: 'ECharts 入门示例'
        },
        tooltip: {},
        legend: {
          data: ['销量']
        },
        xAxis: {
          data: ['衬衫', '羊毛衫', '雪纺衫', '裤子', '高跟鞋', '袜子']
        },
        yAxis: {},
        series: [
          {
            name: '销量',
            type: 'bar',
            data: [5, 20, 36, 10, 10, 20]
          }
        ]
      };

      // 使用刚指定的配置项和数据显示图表。
      myChart.setOption(option);
</script>
  1. 输出到 Dashboard 或 UI

    将 HTML 页面节点的输出连接到 Node-RED 的 Dashboard 节点或任何其他 UI 展示节点。这样,在 Dashboard 或其他 UI 中就能够显示 ECharts 图表了。
    在这里插入图片描述

方法二:使用 ECharts CDN

  1. 引入 ECharts CDN: 直接在 HTML 页面节点中引入 ECharts 的 CDN,无需下载和管理本地库文件。
<!-- 引入 ECharts CDN -->
<script src="https://cdn.jsdelivr.net/npm/echarts@5.2.2/dist/echarts.min.js"></script>

<!-- 为 ECharts 准备一个定义了宽高的 DOM -->
<div id="main" style="width: 600px; height: 400px;"></div>

<script>
    // 初始化 ECharts 实例
    var myChart = echarts.init(document.getElementById('main'));

    // 图表的配置项和数据
    var option = {
        // 配置项...
    };

    // 使用配置项和数据显示图表
    myChart.setOption(option);
</script>

  1. 输出到 Dashboard 或 UI: 将 HTML 页面节点的输出连接到 Node-RED 的 Dashboard 节点或其他 UI 展示节点。
在MATLAB中对数据进行多项式内插并绘制曲线图是数学建模和数据可视化的重要环节。《MATLAB曲线拟合与数据内插技术详解》将为你提供深入的技术解析和实战指导。 参考资源链接:[MATLAB曲线拟合与数据内插技术详解](https://wenku.csdn.net/doc/7rinsov8av?spm=1055.2569.3001.10343) 首先,你需要确保你的数据是散点形式,且已经导入MATLAB中。然后,使用MATLAB的interp1函数进行一维多项式内插。interp1函数能够根据一组已知的散点数据,估算出这些数据点之间的未知值。 假设你有一组一维散点数据x和y,你可以通过以下代码进行二次多项式内插: ```matlab x = [1, 2, 3, 4, 5]; % 已知的散点数据 y = [1, 4, 9, 16, 25]; % 已知的散点数据对应的函数值 % 使用interp1进行二次多项式内插 xx = linspace(min(x), max(x), 100); % 生成一个更密集的x轴数据点数组 yy = interp1(x, y, xx, 'poly', 2); % 'poly', 2指定二次多项式内插 % 绘制原始散点和内插后的平滑曲线 plot(x, y, 'o', xx, yy); % 使用'o'标记原始数据点 title('多项式内插曲线图'); xlabel('X轴'); ylabel('Y轴'); ``` 上述代码首先定义了原始散点数据x和y,然后使用interp1函数进行二次多项式内插,其中'poly', 2指定了多项式的阶数。最后,使用plot函数绘制出了原始散点以及通过内插得到的平滑曲线。 通过以上步骤,你可以在MATLAB中对散点数据进行多项式内插,并绘制出平滑的曲线图。为了进一步深入理解内插技术和曲线拟合,建议详细阅读《MATLAB曲线拟合与数据内插技术详解》,该资源不仅涵盖了基础概念,还包括高级技巧和案例研究,帮助你在数值分析和工程计算中达到新的高度。 参考资源链接:[MATLAB曲线拟合与数据内插技术详解](https://wenku.csdn.net/doc/7rinsov8av?spm=1055.2569.3001.10343)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

sail Jamie

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值