题目大意:
已知考生的三门课分数C,M,E,平均分A由三门课得到,分别按着4个考生分数对n个考生进行从高到底排序,
即对每个考生来说就会有四个排名,接下来有m个查询,每个查询输入一个考生的ID,输出对应最高的排名是ACME中的哪一个,
如果不同课程有相同的排名,则按优先级A C M E输出,如果查询的考生ID不存在,则输出N/A。
思路:
1.定义结构体,存储每个考生的ID,四门课的成绩,其中A(平均值)在输入的时候直接计算成总分,可以避免小数的四舍五入处理。
2.定义二维数组Rank[10000000][4],表示每一个ID对应四门课的排名.
由于优先级是A C M E,则Rank[i][0]~Rank[i][3]分别表示i号考生A C M E分别的排名,方便遍历
3.分别对结构体数组进行四次排序,关键字分别为4个成绩,得到排名
注意关于排名的算法 常考
先将数组第一个个体(假设从0开始)的排名记为1,然后遍历剩余个体,如果当前个体的分数等于上一个个体的分数,那么当前个体的排名等于上一个个体的排名。否则,当前个体的排名等于数组下标+1
stu[0].r = 1;
for(int i = 0; i < n; i++){
if(stu[i].score == stu[i-1].score)stu[i].rank = stu[i-1].rank;
else stu[i].rank = i + 1;
}
(rank保存的方式不一定是结构体中的一项,也可能是数组,或是直接输出,但原理都一样)。
4.对每一个ID,查找到对应二维数组的项,输出4个排名中最小的,如果有相同,输出靠前的。
AC代码:
//PAT_A 1012
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
struct student {
int id;
int grade[4];
}stu[2010];
char course[4] = { 'A','C','M','E' };
int Rank[10000000][4] = { 0 };
int now;
bool cmp(student a, student b) {
return a.grade[now] > b.grade[now];
}
int main() {
int n, m;
(void)scanf("%d%d", &n, &m);
for (int i = 0; i < n; i++) {
(void)scanf("%d%d%d%d", &stu[i].id, &stu[i].grade[1], &stu[i].grade[2], &stu[i].grade[3]);
stu[i].grade[0] = stu[i].grade[1] + stu[i].grade[2] + stu[i].grade[3];//不求平均值,直接记总分,避免小数的处理
}
for (now = 0; now < 4; now++) {
sort(stu, stu + n, cmp);
Rank[stu[0].id][now] = 1;//分数最高的设为1
for (int i = 1; i < n; i++) {
if (stu[i].grade[now] == stu[i - 1].grade[now]) {
Rank[stu[i].id][now] = Rank[stu[i - 1].id][now];
}
else {
Rank[stu[i].id][now] = i + 1;
}
}
}
int query;
for (int i = 0; i < m; i++) {
(void)scanf("%d", &query);
if (Rank[query][0] == 0)printf("N/A\n");
else {
int k = 0;
for (int j = 0; j < 4; j++) {
if (Rank[query][j] < Rank[query][k])k = j;
}
printf("%d %c\n", Rank[query][k], course[k]);
}
}
return 0;
}