你是一个专业的小偷,计划偷窃沿街的房屋,每间房内都藏有一定的现金。这个地方所有的房屋都 围成一圈 ,这意味着第一个房屋和最后一个房屋是紧挨着的。同时,相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警 。
给定一个代表每个房屋存放金额的非负整数数组,计算你 在不触动警报装置的情况下 ,今晚能够偷窃到的最高金额。
示例 1:
输入:nums = [2,3,2]
输出:3
解释:你不能先偷窃 1 号房屋(金额 = 2),然后偷窃 3 号房屋(金额 = 2), 因为他们是相邻的。
示例 2:
输入:nums = [1,2,3,1]
输出:4
解释:你可以先偷窃 1 号房屋(金额 = 1),然后偷窃 3 号房屋(金额 = 3)。
偷窃到的最高金额 = 1 + 3 = 4 。
示例 3:
输入:nums = [0]
输出:0
提示:
1 <= nums.length <= 100
0 <= nums[i] <= 1000
思路:动态规划
本题在[leetcode]198.打家劫舍的基础上增加了一个条件,即第一个房子和最后一个房子不能同时被选择,所以如果开始选了第一个房子之后,剩下可选的集合为[1,n-2],同理,如果开始选了第二个房子之后,那么剩下的可选集合为[2,n-1]。
于是可以从分别选第一个房子和选第二个房子计算,得到两个答案,返回较大的。
即分成两个链进行198题的计算,一个为[0,n-2],另一个为[1,n-1]。
AC代码:
class Solution {
public:
int help(vector<int>& nums, int start, int end) {
int first = nums[start], second = max(nums[start], nums[start + 1]);
for (int i = start + 2; i <= end; i++) {
int temp = second;
second = max(first + nums[i], second);
first = temp;
}
return second;
}
int rob(vector<int>& nums) {
if (nums.size() == 1) {
return nums[0];
} else if (nums.size() == 2) {
return max(nums[0], nums[1]);
}
return max(help(nums, 0, nums.size() - 2), help(nums, 1, nums.size() - 1));
}
};