[leetcode]213.打家劫舍(2)

本文探讨了一种扩展的动态规划问题,即在不能同时盗窃相邻房屋的条件下,如何最大化从环形排列的房屋中盗取的总金额。通过分别计算从第一个房屋和第二个房屋开始盗窃的情况,并取两者中的较大值,可以找到最优解。示例展示了不同输入情况下如何应用此方法,并提供了AC代码作为解决方案。
摘要由CSDN通过智能技术生成

你是一个专业的小偷,计划偷窃沿街的房屋,每间房内都藏有一定的现金。这个地方所有的房屋都 围成一圈 ,这意味着第一个房屋和最后一个房屋是紧挨着的。同时,相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警 。

给定一个代表每个房屋存放金额的非负整数数组,计算你 在不触动警报装置的情况下 ,今晚能够偷窃到的最高金额。

示例 1:

输入:nums = [2,3,2]
输出:3
解释:你不能先偷窃 1 号房屋(金额 = 2),然后偷窃 3 号房屋(金额 = 2), 因为他们是相邻的。

示例 2:

输入:nums = [1,2,3,1]
输出:4
解释:你可以先偷窃 1 号房屋(金额 = 1),然后偷窃 3 号房屋(金额 = 3)。
     偷窃到的最高金额 = 1 + 3 = 4

示例 3:

输入:nums = [0]
输出:0

提示:

1 <= nums.length <= 100
0 <= nums[i] <= 1000

思路:动态规划

本题在[leetcode]198.打家劫舍的基础上增加了一个条件,即第一个房子和最后一个房子不能同时被选择,所以如果开始选了第一个房子之后,剩下可选的集合为[1,n-2],同理,如果开始选了第二个房子之后,那么剩下的可选集合为[2,n-1]。
于是可以从分别选第一个房子和选第二个房子计算,得到两个答案,返回较大的。
即分成两个链进行198题的计算,一个为[0,n-2],另一个为[1,n-1]。

AC代码:

class Solution {
   public:
    int help(vector<int>& nums, int start, int end) {
        int first = nums[start], second = max(nums[start], nums[start + 1]);
        for (int i = start + 2; i <= end; i++) {
            int temp = second;
            second = max(first + nums[i], second);
            first = temp;
        }
        return second;
    }
    int rob(vector<int>& nums) {
        if (nums.size() == 1) {
            return nums[0];
        } else if (nums.size() == 2) {
            return max(nums[0], nums[1]);
        }
        return max(help(nums, 0, nums.size() - 2), help(nums, 1, nums.size() - 1));
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值