哈夫曼树编码-C语言

哈夫曼树编码

1.实验目的

了解二叉树的定义,理解二叉树的基本性质和存储结构,掌握哈夫曼树的构造,实现哈夫曼编码与译码算法。

2.实验内容

从键盘输入一串电文字符与权值,输出对应的哈夫曼编码;从键盘输入一串二进制代码,输出对应的电文字符串。具体步骤如下:

  1. 构造一棵哈夫曼树;
  2. 实现哈夫曼编码;
  3. 对哈夫曼编码生成的二进制串进行译码;
  4. 要求程序中字符和权值是可变的,实现程序的灵活性。
3.实验工具

Dev-C++

4.实验代码
//Authors:xioabei

#include<stdio.h>
#include<stdlib.h>
#include<string.h>
typedef char **HuffmanCode;   //动态分配数组存储哈夫曼编码表 
typedef struct{
 int weight;
 int parent,lchild,rchild;
}HTNode,*HuffmanTree;
typedef struct Code{
 char ch;
 int weight;
 Code *next;
}*CodeLink;
//创建字符与权值 
void CreateCouple(CodeLink &Couple,int n){
 int i;
 CodeLink r,p;
 Couple = (CodeLink)malloc(sizeof(Code));
 Couple->next = NULL;
 r = Couple;
 for(i = 1;i<=n;i++){
  p = (CodeLink)malloc(sizeof(Code));
  printf("[请输入第%d个字符与权值:]\n>>>",i);
  getchar();
  scanf("%c %d",&Couple[i].ch,&Couple[i].weight);
  p->next = NULL;
  r->next = p;
  r = p;
 }
 printf("\n[成功创建字符与权值]\n");
}
//选择最小的两个 
void Select(HuffmanTree HT,int n,int *s1, int *s2){
 int i,min,max;
 for(i=1;i<=n;i++){
  if(HT[i].parent == 0){
   *s2 = i;
   max = i;
   *s1 = i;
  }
 }
 for(i=1;i<=n;i++){
  if(HT[*s1].weight>HT[i].weight && HT[i].parent == 0)
   *s1 = i;
  if(HT[max].weight<HT[i].weight && HT[i].parent == 0)
   max = i;
 }
 min = HT[*s1].weight;
 HT[*s1].weight = HT[max].weight;
 for(i=1;i<=n;i++)
  if(HT[*s2].weight>HT[i].weight && HT[i].parent == 0)
   *s2 = i;
 HT[*s1].weight = min;
 printf("%d--%d\n",HT[*s1].weight,HT[*s2].weight);
}
//创建哈夫曼树 
void CreateHuffmanTree(HuffmanTree &HT,CodeLink Couple,int n){
 printf("\n---------开始创建哈夫曼树---------\n");
 int m,i,s1=1,s2=1,*p = &s1,*q = &s2;
 //构造哈夫曼树HT
 if(n<=1)
  return;
 m=2*n-1;
 HT =  (HTNode*)malloc(sizeof(HTNode)*(m+1)); //由于0号单元未用,所以需要动态分配m+1个单元,HT[m]表示根结点 
 for(i=1;i<=m;i++){       //将1~m号单元初始化为0 
  HT[i].parent = 0;
  HT[i].lchild = 0;
  HT[i].rchild = 0;
 }
 printf("\n初始化成功……\n"); 
 for(i=1;i<=n;i++)       //输入前n个单元叶子结点权值
  HT[i].weight = Couple[i].weight;
//---------- 初始化工作结束,开始创建哈夫曼树 -----------// 
 for(i=n+1;i<=m;i++){
//  通过n-1次选择、删除、合并来创建哈夫曼树
  Select(HT,i-1,p,q);
//  在HT[k](1<=k<=i-1)中选择双亲域为0且权值最小的结点,并且返回它们在HT中序号s1,s2
  HT[s1].parent = i;
  HT[s2].parent = i;
//  得到新结点i,从森林中删除s1,s2,将s1,s2双亲域由0改为i
  HT[i].lchild = s1;      //s1,s2分别作为i的左右孩子 
  HT[i].rchild = s2;
  HT[i].weight = HT[s1].weight + HT[s2].weight; //i的权值为左右孩子权值之和 
 }
 printf("\n---------结束创建哈夫曼树---------\n");
}
//创建哈夫曼编码 
void CreateHuffmanCode(HuffmanTree HT,HuffmanCode &HC,int n){
 int c,f,start,i;
 char *cd; 
 //从叶子结点逆向求每个字符的哈夫曼编码,存储在编码表HC中 
 HC = (HuffmanCode)malloc(sizeof(char*)*(n+1));  //分配n个字符编码表空间 
 cd = (char*)malloc(sizeof(char)*n);    //分配临时存放每个字符编码动态数组空间 
 cd[n-1] = '\0';         //编码结束符 
 for(i=1;i<=n;i++){        //逐个字符求哈夫曼编码 
  start = n-1;   //start开始指向最后,即编码结束位置 
  c = i;
  f = HT[i].parent;  //f指向c的双亲结点
  while(f!=0){   //从叶子结点开始向上回溯,直到根结点 
   --start;   //回溯一次start向前指一个位置 
   if(HT[f].lchild==c)
    cd[start] = '0';//结点c是f的左孩子,则生成代码"0" 
   else
    cd[start] = '1';//结点c是f的右孩子,则生成代码"1" 
   c = f;
   f = HT[f].parent; //继续向上回溯 
  }      //求出第i个字符编码 
  HC[i] = (char*)malloc(sizeof(char)*(n-start)); //为第i个字符编码分配空间 
  strcpy(HC[i],&cd[start]);//将求得的编码从临时空间cd中复制到HC当前行中
  puts(HC[i]);
 }
 free(cd);     //释放临时空间 
 printf("\n---------哈夫曼树编码成功---------\n");
}
//编码 
void Encode(HuffmanCode HC,CodeLink Couple,char T[],int n){
 int i,j,k,t;
 printf("[编码如下:]\n");
 for(i=0;T[i]!='\0';i++)
  for(j=1;j<=n;j++){
   if(Couple[j].ch==T[i]){
    for(k=1;k<=n;k++){
     if(Couple[j].weight==Couple[k].weight)
      puts(HC[k]);
    }
   } 
 }
}
//译码 
void Decode(HuffmanCode HC,CodeLink Couple,char T[],int n){
 int i,j,k,location = 0,len,tag;
 printf("[译码如下:]\n");
 for(i=0;T[location+1]!='\0';i++){
  for(j=1;j<=n;j++){
   len = strlen(HC[j]);
   tag = 1;
   for(k=0;k<len;k++){
    if(HC[j][k]!=T[location+k]){
     tag = 0;
     break;
    }
   }
   if(tag==1){
    printf("%c",Couple[j].ch);
    break;
   }
  }
  len = strlen(HC[j]);
  location += len;
 }
}
// 打印菜单 
void PrintMenu(){
 printf("\n**********菜单**********\n");
 printf("\n1.创建字符与权值;\n");
 printf("2.创建哈夫曼树;\n");
 printf("3.生成哈夫曼编码;\n");
 printf("4.编码;\n");
 printf("5.译码;\n");
 printf("0.退出;\n");
 printf("\n************************\n");
 printf("[请输入你的选择:]\n>>>");
}
//主函数 
int main(){
 HuffmanTree HT;
 HuffmanCode HC;
 CodeLink Couple; 
 int i,n,user;
 char T[100];
 while(1){
  PrintMenu();
  scanf("%d",&user);
  switch(user){
   case 1:{
    printf("[请输入叶子结点数:]\n>>>");
    scanf("%d",&n);
    CreateCouple(Couple,n);
    break;
   }
   case 2:CreateHuffmanTree(HT,Couple,n);break;
   case 3:CreateHuffmanCode(HT,HC,n);break;
   case 4:{
    printf("[请输入要编码的字符:]\n>>>");
    getchar();
    gets(T);
    Encode(HC,Couple,T,n);
    break;
   }
   case 5:{
    printf("[请输入要编码的字符:]\n>>>");
    getchar();
    gets(T);
    Decode(HC,Couple,T,n);
    break; 
   } 
   case 0:exit(0);
  }
 }
 return 0;
}

5.实验结果

Haffuman

Haffuman

6.实验分析

1.HT初态

HT初态
2.HT终态
HT终态
3.示意图
哈夫曼树

7.资料

1951年,哈夫曼在麻省理工学院(MIT)攻读博士学位,他和修读信息论课程的同学得选择是完成学期报告还是期末考试。导师罗伯特·法诺(Robert Fano)出的学期报告题目是:查找最有效的二进制编码。由于无法证明哪个已有编码是最有效的,哈夫曼放弃对已有编码的研究,转向新的探索,最终发现了基于有序频率二叉树编码的想法,并很快证明了这个方法是最有效的。哈夫曼使用自底向上的方法构建二叉树,避免了次优算法香农-范诺编码(Shannon–Fano coding)的最大弊端──自顶向下构建树。

给定N个权值作为N个叶子结点,构造一棵二叉树,若该树的带权路径长度达到最小,称这样的二叉树为最优二叉树,也称为哈夫曼树(Huffman Tree)。哈夫曼树是带权路径长度最短的树,权值较大的结点离根较近。

在计算机数据处理中,哈夫曼编码使用变长编码表对源符号(如文件中的一个字母)进行编码,其中变长编码表是通过一种评估来源符号出现机率的方法得到的,出现机率高的字母使用较短的编码,反之出现机率低的则使用较长的编码,这便使编码之后的字符串的平均长度、期望值降低,从而达到无损压缩数据的目的。

#include #include #include #include using namespace std; # define MaxN 100//初始设定的最大结点数 # define MaxC 1000//最大编码长度 # define ImpossibleWeight 10000//结点不可能达到的权值 # define n 26//字符集的个数 //-----------哈夫曼树的结点结构类型定义----------- typedef struct //定义哈夫曼树各结点 { int weight;//权值 int parent;//双亲结点下标 int lchild;//左孩子结点下标 int rchild;//右孩子结点下标 }HTNode,*HuffmanTree;//动态分配数组存储哈夫曼树 typedef char**HuffmanCode;//动态分配数组存储哈夫曼编码表 //-------全局变量-------- HuffmanTree HT; HuffmanCode HC; int *w;//权值数组 //const int n=26;//字符集的个数 char *info;//字符值数组 int flag=0;//初始化标记 //********************************************************************** //初始化函数 //函数功能: 从终端读入字符集大小n , 以及n个字符和n个权值,建立哈夫曼树,并将它存于文件hfmTree中 //函数参数: //向量HT的前n个分量表示叶子结点,最后一个分量表示根结点,各字符的编码长度不等,所以按实际长度动态分配空间 void Select(HuffmanTree t,int i,int &s1,int &s2) { //s1为最小的两个值中序号最小的那个 int j; int k=ImpossibleWeight;//k的初值为不可能达到的最大权值 for(j=1;j<=i;j++) { if(t[j].weight<k&&t[j].parent==0) {k=t[j].weight; s1=j;} } t[s1].parent=1; k=ImpossibleWeight; for(j=1;j<=i;j++) { if(t[j].weight0),构造哈夫曼树HT,并求出n个字符的哈弗曼编码HC { int i,m,c,s1,s2,start,f; HuffmanTree p; char* cd; if(num<=1) return; m=2*num-1;//m为结点数,一棵有n个叶子结点的哈夫曼树共有2n-1个结点,可以存储在一个大小为2n-1的一维数组中 HT=(HuffmanTree)malloc((m+1)*sizeof(HTNode));//0号单元未用 //--------初始化哈弗曼树------- for(p=HT+1,i=1;iweight=*w; p->parent=0; p->lchild=0; p->rchild=0; } for(i=num+1;iweight=0; p->parent=0; p->lchild=0; p->rchild=0; } //--------建哈夫曼树------------- for(i=num+1;i<=m;i++) { Select(HT,i-1,s1,s2);//在HT[1...i-1]选择parent为0且weight最小的两个结点,其序号分别为s1和s2 HT[s1].parent=i; HT[s2].parent=i; HT[i].lchild=s1; HT[i].rchild=s2;//左孩子权值小,右孩子权值大 HT[i].weight=HT[s1].weight+HT[s2].weight; } //-------从叶子到根逆向求每个字符的哈弗曼编码-------- HC=(HuffmanCode)malloc((num+1)*sizeof(char *));//指针数组:分配n个字符编码的头指针向量 cd=(char*)malloc(n*sizeof(char*));//分配求编码的工作空间 cd[n-1]='\0';//编码结束符 for(i=1;i<=n;i++)//逐个字符求哈弗曼编码 { start=n-1;//编码结束符位置 for(c=i,f=HT[i].parent;f!=0;c=f,f=HT[f].parent)//从叶子到跟逆向求哈弗曼编码 if(HT[f].lchild==c) cd[--start]='0';//判断是左孩子还是右孩子(左为0右为1) else cd[--start]='1'; HC[i]=(char*)malloc((num-start)*sizeof(char*));//按所需长度分配空间 int j,h; strcpy(HC[i],&cd[start]); } free(cd); } //****************初始化函数****************** void Initialization() { flag=1;//标记为已初始化 int i; w=(int*)malloc(n*sizeof(int));//为26个字符权值分配空间 info=(char*)malloc(n*sizeof(char));//为26个字符分配空间 ifstream infile("ABC.txt",ios::in); if(!infile) { cerr<<"打开失败"<<endl; exit(1); } for(i=0;i>info[i]; infile>>w[i]; } infile.close(); cout<<"读入字符成功!"<<endl; HuffmanCoding(HT,HC,w,n); //------------打印编码----------- cout<<"依次显示各个字符的值,权值或频度,编码如下"<<endl; cout<<"字符"<<setw(6)<<"权值"<<setw(11)<<"编码"<<endl; for(i=0;i<n;i++) { cout<<setw(3)<<info[i]; cout<<setw(6)<<w[i]<<setw(12)<<HC[i+1]<<endl; } //---------将建好的哈夫曼树写入文件------------ cout<<"下面将哈夫曼树写入文件"<<endl; ofstream outfile("hfmTree.txt",ios::out); if(!outfile) { cerr<<"打开失败"<<endl; exit(1); } for(i=0;i<n;i++,w++) { outfile<<info[i]<<" "; outfile<<w[i]<<" "; outfile<<HC[i+1]<<" "; } outfile.close(); cout<<"已经将字符与对应的权值,编码写入根目录下文件hfmTree.txt"<<endl; } //*****************输入待编码字符函数************************* void Input() { char string[100]; ofstream outfile("ToBeTran.txt",ios::out); if(!outfile) { cerr<<"打开失败"<<endl; exit(1); } cout<<"请输入你想要编码的字符串(字符个数应小于100),以#结束"<>string; for(int i=0;string[i]!='\0';i++) { if(string[i]=='\0') break; outfile<<string[i]; } cout<<"获取报文成功"<<endl; outfile.close(); cout<<"------"<<"已经将报文存入根目录下的ToBeTran.txt文件"<<endl; } //******************编码函数**************** void Encoding() { int i,j; char*string; string=(char*)malloc(MaxN*sizeof(char)); cout<<"下面对根目录下的ToBeTran.txt文件中的字符进行编码"<<endl; ifstream infile("ToBeTran.txt",ios::in); if(!infile) { cerr<<"打开失败"<<endl; exit(1); } for(i=0;i>string[i]; } for(i=0;i<100;i++) if(string[i]!='#') cout<<string[i]; else break; infile.close(); ofstream outfile("CodeFile.txt",ios::out); if(!outfile) { cerr<<"打开失败"<<endl; exit(1); } for(i=0;string[i]!='#';i++) { for(j=0;j<n;j++) { if(string[i]==info[j]) outfile<<HC[j+1]; } } outfile<<'#'; outfile.close(); free(string); cout<<"编码完成------"; cout<<"编码已写入根目录下的文件CodeFile.txt中"<<endl; } //******************译码函数**************** void Decoding() { int j=0,i; char *code; code=(char*)malloc(MaxC*sizeof(char)); char*string; string=(char*)malloc(MaxN*sizeof(char)); cout<<"下面对根目录下的CodeFile.txt文件中的代码进行译码"<<endl; ifstream infile("CodeFile.txt",ios::in); if(!infile) { cerr<<"打开失败"<<endl; exit(1); } for( i=0;i>code[i]; if(code[i]!='#') { cout<<code[i]; } else break; } infile.close(); int m=2*n-1; for(i=0;code[i-1]!='#';i++) { if(HT[m].lchild==0) { string[j]=info[m-1]; j++; m=2*n-1; i--; } else if(code[i]=='1') m=HT[m].rchild; else if(code[i]=='0') m=HT[m].lchild; } string[j]='#'; ofstream outfile("TextFile.txt",ios::out); if(!outfile) { cerr<<"打开失败"<<endl; exit(1); } cout<<"的译码为------"<<endl; for( i=0;string[i]!='#';i++) { outfile<<string[i]; cout<<string[i]; } outfile<<'#'; outfile.close(); cout<<"------译码完成------"<<endl; cout<<"译码结果已写入根目录下的文件TextFile.txt中"<<endl; free(code); free(string); } //*************打印编码函数**************** void Code_printing() { int i; char *code; code=(char*)malloc(MaxC*sizeof(char)); cout<<"下面打印根目录下文件CodeFile.txt中的编码"<<endl; ifstream infile("CodeFile.txt",ios::in); if(!infile) { cerr<<"打开失败"<<endl; exit(1); } for( i=0;i>code[i]; if(code[i]!='#') cout<<code[i]; else break; } infile.close(); cout<<endl; ofstream outfile("CodePrin.txt",ios::out); if(!outfile) { cerr<<"打开失败"<<endl; exit(1); } for(i=0;code[i]!='#';i++) { outfile<<code[i]; } outfile.close(); free(code); cout<<"------打印结束------"<<endl; cout<<"该字符形式的编码文件已写入文件CodePrin.txt中"<<endl; } //*************打印哈夫曼树函数**************** int numb=0; void coprint(HuffmanTree start,HuffmanTree HT) //start=ht+26这是一个递归算法 { if(start!=HT) { ofstream outfile("TreePrint.txt",ios::out); if(!outfile) { cerr<<"打开失败"<rchild,HT); //递归先序遍历 cout<<setw(5*numb)<weight<rchild==0) cout<<info[start-HT-1]<<endl; outfile<weight; coprint(HT+start->lchild,HT); numb--; outfile.close(); } } void Tree_printing(HuffmanTree HT,int num) { HuffmanTree p; p=HT+2*num-1; //p=HT+26 cout<<"下面打印赫夫曼树"<<endl; coprint(p,HT); //p=HT+26 cout<<"打印工作结束"<<endl; } //*************主函数************************** int main() { char choice; do{ cout<<"************哈弗曼编/译码器系统***************"<<endl; cout<<"请选择您所需功能:"<<endl; cout<<":初始化哈弗曼树"<<endl; cout<<":输入待编码字符串"<<endl; cout<<":利用已建好的哈夫曼树进行编码"<<endl; cout<<":利用已建好的哈夫曼树进行译码"<<endl; cout<<":打印代码文件"<<endl; cout<<":打印哈夫曼树"<<endl; cout<<":退出"<<endl; if(flag==0) { cout<<"请先初始化哈夫曼树,输入I"<<endl; cout<<""<>choice; switch(choice) { case 'I':Initialization();break; case 'W':Input();break; case 'E':Encoding();break; case 'D':Decoding();break; case 'P':Code_printing();break; case 'T':Tree_printing(HT,n);break; case 'Q':;break; default:cout<<"输入的命令出错,请重新输入!"<<endl; } }while(choice!='Q'); free(w); free(info); free(HT); free(HC); system("pause"); return 0; }
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值