【Python学习】决策树生成与可视化

本文详细介绍如何使用Python的sklearn库构建基于信息熵的决策树模型,并通过Graphviz进行模型可视化,导出为dot文件进一步处理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

from sklearn.tree import DecisionTreeClassifier as DTC
dtc = DTC(criterion=‘entropy’) #建立决策树模型,基于信息熵
dtc.fit(x, y) #训练模型
#导入相关函数,可视化决策树。
#导出的结果是一个dot文件,需要安装Graphviz才能将它转换为pdf或png等格式。
from sklearn.tree import export_graphviz
x = pd.DataFrame(x)
x = pd.DataFrame(x)
with open(“tree.dot”, ‘w’) as f:
f = export_graphviz(dtc, feature_names = x.columns, out_file = f)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值