1、引入
在生活中,可以发现在某些图中,如web底层结构、人际关系网,在图中可以发现高度聚集节点群的算法, 即寻找**“强连通分支Strongly Connected Components”算法。
强连通分支, 定义为图G的一个子集C,C中的任意两个顶点v,w之间都有路径来回**,即(v,w)(w,v)都是C的路径,而且C是具有这样性质的最大子集。
下图是具有3个强连通分支的9顶点有向图
一旦找到强连通分支, 可以据此对图的顶点进行分类, 并对图进行化简。
2、功能分析
(1)转置概念
在用深度优先搜索来发现强连通分支之前, 先熟悉一个概念: Transposition转置,一个有向图G的转置GT,定义为将图G的所有边的顶点交换次序,如将(v,w)转换为(w,v),可以观察到图和转置图在强连通分支的数量和划分上,是相同的。
(2)Kosaraju算法思路
- 首先, 对图G调用DFS算法, 为每个顶点计算“结束时间”;
- 然后, 将图G进行转置, 得到GT;
- 再对GT调用DFS算法, 但在dfs函数中,对每个顶点的搜索循环里, 要以顶点的“结束时间”倒序的顺序来搜索
- 最后, 深度优先森林中的每一棵树就是一 个强连通分支
以一个例子为例,来阐述以上算法
Step1:第一趟DFS
Step2:转置后第二趟DFS
Step3:深度优先森林结果