To see a World in a Grain of Sand
And a Heaven in a Wild Flower,
Hold Infinity in the palm of your hand
And Eternity in an hour.
—— William Blake
听说lcy帮大家预定了新马泰7日游,Wiskey真是高兴的夜不能寐啊,他想着得快点把这消息告诉大家,虽然他手上有所有人的联系方式,但是一个一个联系过去实在太耗时间和电话费了。他知道其他人也有一些别人的联系方式,这样他可以通知其他人,再让其他人帮忙通知一下别人。你能帮Wiskey计算出至少要通知多少人,至少得花多少电话费就能让所有人都被通知到吗?
Input
多组测试数组,以EOF结束。
第一行两个整数N和M(1<=N<=1000, 1<=M<=2000),表示人数和联系对数。
接下一行有N个整数,表示Wiskey联系第i个人的电话费用。
接着有M行,每行有两个整数X,Y,表示X能联系到Y,但是不表示Y也能联系X。
Output
输出最小联系人数和最小花费。
每个CASE输出答案一行。
Sample Input
12 16 2 2 2 2 2 2 2 2 2 2 2 2 1 3 3 2 2 1 3 4 2 4 3 5 5 4 4 6 6 4 7 4 7 12 7 8 8 7 8 9 10 9 11 10
Sample Output
3 6
今天一天终于明白Kosaraju 算法的原理,也搞清楚了如何判断出度入度为零的问题,真艰难。
Kosaraju 算法原理参考:吕队代码:https://blog.csdn.net/Prediction__/article/details/100052517
入度为零:再来一遍dfs;
出度为零:再来一遍rdfs;
只是网上Kosaraju 算法资源稀少。
代码如下:
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
#include<map>
#include<vector>
#define ll long long
#define inf 0x3f3f3f3f
#define N 1010
using namespace std;
int V;
vector<int>g[N];
vector<int>rg[N];
vector<int>vs;
vector<int>ma;
struct A{
int tp,a;//tp为拓扑序
bool operator<(const A n1)const{
return n1.tp<tp;
};
}x;
priority_queue<A>q;
bool used[N];
int cmp[N];
int cost[N];
void add_edge(int from,int to){
g[from].push_back(to);
rg[to].push_back(from);
}
void dfs(int v){
used[v]=true;
for(int i=0;i<g[v].size();i++){
if(!used[g[v][i]])dfs(g[v][i]);
}
vs.push_back(v);
}
void rdfs(int v,int k){
used[v]=true;
cmp[v]=k;
x.tp=k;x.a=v;
q.push(x);
for(int i=0;i<rg[v].size();i++){
if(!used[rg[v][i]])rdfs(rg[v][i],k);
}
}
int scc(){
memset(used,0,sizeof(used));
vs.clear();
for(int v=0;v<V;v++){
if(!used[v])dfs(v);
}
memset(used,0,sizeof(used));
int k=0;
for(int i=vs.size()-1;i>=0;i--){
if(!used[vs[i]])rdfs(vs[i],k++);
}
return k;
}
int main(){
int m,a,b;
while(scanf("%d %d",&V,&m)!=EOF){
for(int i=0;i<=V;i++){
g[i].clear();
rg[i].clear();
}
for(int i=0;i<V;i++){
scanf("%d",&cost[i]);
}
while(m--){
scanf("%d %d",&a,&b);
a--;b--;
add_edge(a,b);
}
int n=scc();
ma.clear();
memset(used,0,sizeof(used));
while(!q.empty()){//判断入度为零
x=q.top();q.pop();
if(used[x.a])continue;
dfs(x.a);
ma.push_back(x.tp);
} //代码精髓,以拓扑序从低到高,dfs遍历一遍,ma标记所有入度为零的拓扑序
int ans=0,sum=ma.size();
for(int i=0;i<sum;i++){
int minn=inf;
for(int j=0;j<V;j++)
if(cmp[j]==ma[i]){
minn=min(minn,cost[j]);
}
ans+=minn;
}
printf("%d %d\n",sum,ans);
}
return 0;
}